Wolfram Function Repository
Instant-use add-on functions for the Wolfram Language
Function Repository Resource:
Given a simplex and point, find the cevians
ResourceFunction["Cevians"][simplex,point] computes the cevians for a given simplex and point. |
Find the generated cevians for a given triangle and point:
In[1]:= |
Out[3]= |
Show the cevians:
In[4]:= |
Out[4]= |
Verify Ceva's Theorem:
In[5]:= |
Out[7]= |
Find the generated cevians for a given tetrahedron and point:
In[8]:= |
Out[10]= |
Show the cevians:
In[11]:= |
Out[11]= |
Verify Ceva's Theorem:
In[12]:= |
Out[14]= |
Triangle and Point may be used:
In[15]:= |
Out[16]= |
Tetrahedron and Point may be used:
In[17]:= |
Out[18]= |
Simplex and Point may be used:
In[19]:= |
Out[20]= |
Symbolic variables may be used in a triangle:
In[21]:= |
Out[23]= |
The cevians might not be on the line segments of the original triangle:
In[24]:= |
Out[25]= |
Symbolic variables currently do not work for a tetrahedron:
In[26]:= |
Out[28]= |
Calculate the Gergonne point and find the cevians:
In[29]:= |
Out[31]= |
Show the cevians and the incircle:
In[32]:= |
Out[32]= |
Compute some values for a tetrahedron:
In[33]:= |
Out[34]= |
Opposite edges of the tetrahedron have the same square sum, making it orthocentric:
In[35]:= |
Out[35]= |
The cevians of the Monge point are the altitudes of the tetrahedron:
In[36]:= |
Out[36]= |
Wolfram Language 13.0 (December 2021) or above
This work is licensed under a Creative Commons Attribution 4.0 International License