Wolfram Function Repository
Instant-use add-on functions for the Wolfram Language
Function Repository Resource:
Given a simplex and point, find the cevians
ResourceFunction["Cevians"][simplex,point] computes the cevians for a given simplex and point. |
Find the generated cevians for a given triangle and point:
| In[1]:= | ![]() |
| Out[3]= |
Show the cevians:
| In[4]:= | ![]() |
| Out[4]= | ![]() |
Verify Ceva's Theorem:
| In[5]:= | ![]() |
| Out[7]= |
Find the generated cevians for a given tetrahedron and point:
| In[8]:= | ![]() |
| Out[10]= |
Show the cevians:
| In[11]:= | ![]() |
| Out[11]= | ![]() |
Verify Ceva's Theorem:
| In[12]:= | ![]() |
| Out[14]= |
Triangle and Point may be used:
| In[15]:= | ![]() |
| Out[16]= |
Tetrahedron and Point may be used:
| In[17]:= | ![]() |
| Out[18]= |
Simplex and Point may be used:
| In[19]:= | ![]() |
| Out[20]= |
Symbolic variables may be used in a triangle:
| In[21]:= | ![]() |
| Out[23]= |
The cevians might not be on the line segments of the original triangle:
| In[24]:= | ![]() |
| Out[25]= | ![]() |
Symbolic variables currently do not work for a tetrahedron:
| In[26]:= | ![]() |
| Out[28]= | ![]() |
Calculate the Gergonne point and find the cevians:
| In[29]:= | ![]() |
| Out[31]= |
Show the cevians and the incircle:
| In[32]:= | ![]() |
| Out[32]= | ![]() |
Compute some values for a tetrahedron:
| In[33]:= | ![]() |
| Out[34]= |
Opposite edges of the tetrahedron have the same square sum, making it orthocentric:
| In[35]:= |
| Out[35]= |
The cevians of the Monge point are the altitudes of the tetrahedron:
| In[36]:= | ![]() |
| Out[36]= | ![]() |
Wolfram Language 13.0 (December 2021) or above
This work is licensed under a Creative Commons Attribution 4.0 International License