Wolfram Function Repository
Instant-use add-on functions for the Wolfram Language
Function Repository Resource:
Generate the Bézout matrix of two univariate polynomials
ResourceFunction["BezoutMatrix"][poly1,poly2,var] returns the Bézout matrix of the polynomials poly1 and poly2 with respect to the variable var. |
The Bézout matrix of two polynomials:
In[1]:= |
Out[1]= |
The Bézout matrix of polynomials with numeric coefficients:
In[2]:= |
Out[2]= |
The Bézout matrix of polynomials with parametric coefficients:
In[3]:= |
Out[3]= |
A polynomial is stable if all of its roots have negative real parts. Use BezoutMatrix to check the stability of a polynomial:
In[4]:= |
Out[6]= |
In[7]:= |
Out[7]= |
Verify stability by computing the roots of the polynomial:
In[8]:= |
Out[8]= |
The Bézout matrix is symmetric:
In[9]:= |
Out[9]= |
The determinant of the Bézout matrix of two polynomials is proportional to their resultant:
In[10]:= |
In[11]:= |
Out[11]= |
In[12]:= |
Out[12]= |
Verify a relationship between the Bézout matrix and the Sylvester matrix:
In[13]:= |
In[14]:= |
In[15]:= |
In[16]:= |
Out[16]= |
This work is licensed under a Creative Commons Attribution 4.0 International License