Wolfram Function Repository
Instant-use add-on functions for the Wolfram Language
Function Repository Resource:
Compute the integral describing the area between two plane curves
ResourceFunction["AreaBetweenCurvesIntegral"][{f,g},{x,xmin,xmax}] returns an Inactive integral representing the area of the enclosed region between the functions f(x) and g(x) over the interval xmin<x<xmax. |
Assumptions | $Assumptions | assumptions on parameters |
Compute an integral representing the area between two curves:
In[1]:= |
Out[1]= |
In[2]:= |
Out[2]= |
Activate the integral to compute the area:
In[3]:= |
Out[3]= |
Find the area of the region enclosed by two curves:
In[4]:= |
Out[4]= |
In[5]:= |
Out[5]= |
In[6]:= |
Out[6]= |
Where the curves do not meet:
In[7]:= |
Out[7]= |
In[8]:= |
Out[8]= |
With multiple enclosed regions, the integrand will use Abs to return a positive area:
In[9]:= |
Out[9]= |
In[10]:= |
Out[10]= |
Between curves containing parameters:
In[11]:= |
Out[11]= |
The result may be conditioned on parameters:
In[12]:= |
Out[12]= |
Make an assumption about the parameter to then evaluate the area:
In[13]:= |
Out[13]= |
In[14]:= |
Out[14]= |
Compute the area of a disk:
In[15]:= |
Out[15]= |
In[16]:= |
Out[16]= |
In[17]:= |
Out[17]= |
Cavalieri's principle states that the area between two curves does not change when each curve is shifted by the same amount:
In[18]:= |
In[19]:= |
In[20]:= |
Out[20]= |
In[21]:= |
Out[21]= |
In[22]:= |
Out[22]= |
Use resource function AreaBetweenCurves to compute the area directly:
In[23]:= |
Out[23]= |
This work is licensed under a Creative Commons Attribution 4.0 International License