Wolfram Function Repository
Instant-use add-on functions for the Wolfram Language
Function Repository Resource:
Compute the integral describing the area between two plane curves
ResourceFunction["AreaBetweenCurvesIntegral"][{f,g},{x,xmin,xmax}] returns an Inactive integral representing the area of the enclosed region between the functions f(x) and g(x) over the interval xmin<x<xmax. |
Assumptions | $Assumptions | assumptions on parameters |
Compute an integral representing the area between two curves:
In[1]:= | ![]() |
Out[1]= | ![]() |
In[2]:= | ![]() |
Out[2]= | ![]() |
Activate the integral to compute the area:
In[3]:= | ![]() |
Out[3]= | ![]() |
Find the area of the region enclosed by two curves:
In[4]:= | ![]() |
Out[4]= | ![]() |
In[5]:= | ![]() |
Out[5]= | ![]() |
In[6]:= | ![]() |
Out[6]= | ![]() |
Where the curves do not meet:
In[7]:= | ![]() |
Out[7]= | ![]() |
In[8]:= | ![]() |
Out[8]= | ![]() |
With multiple enclosed regions, the integrand will use Abs to return a positive area:
In[9]:= | ![]() |
Out[9]= | ![]() |
In[10]:= | ![]() |
Out[10]= | ![]() |
Between curves containing parameters:
In[11]:= | ![]() |
Out[11]= | ![]() |
The result may be conditioned on parameters:
In[12]:= | ![]() |
Out[12]= | ![]() |
Make an assumption about the parameter to then evaluate the area:
In[13]:= | ![]() |
Out[13]= | ![]() |
In[14]:= | ![]() |
Out[14]= | ![]() |
Compute the area of a disk:
In[15]:= | ![]() |
Out[15]= | ![]() |
In[16]:= | ![]() |
Out[16]= | ![]() |
In[17]:= | ![]() |
Out[17]= | ![]() |
Cavalieri's principle states that the area between two curves does not change when each curve is shifted by the same amount:
In[18]:= | ![]() |
In[19]:= | ![]() |
In[20]:= | ![]() |
Out[20]= | ![]() |
In[21]:= | ![]() |
Out[21]= | ![]() |
In[22]:= | ![]() |
Out[22]= | ![]() |
Use resource function AreaBetweenCurves to compute the area directly:
In[23]:= | ![]() |
Out[23]= | ![]() |
This work is licensed under a Creative Commons Attribution 4.0 International License