Wolfram Function Repository
Instant-use add-on functions for the Wolfram Language
Function Repository Resource:
Evaluate the associated Anger–Weber function
ResourceFunction["AngerWeberA"][ν,z] gives the associated Anger–Weber function |
Evaluate numerically:
In[1]:= | ![]() |
Out[1]= | ![]() |
Plot :
In[2]:= | ![]() |
Out[2]= | ![]() |
Evaluate for complex arguments:
In[3]:= | ![]() |
Out[3]= | ![]() |
Evaluate to arbitrary precision:
In[4]:= | ![]() |
Out[4]= | ![]() |
The precision of the output tracks the precision of the input:
In[5]:= | ![]() |
Out[5]= | ![]() |
Simple exact values are generated automatically:
In[6]:= | ![]() |
Out[6]= | ![]() |
AngerWeberA threads elementwise over lists:
In[7]:= | ![]() |
Out[7]= | ![]() |
Use FunctionExpand to expand AngerWeberA into hypergeometric functions:
In[8]:= | ![]() |
Out[8]= | ![]() |
Compare AngerWeberA with the integral definition:
In[9]:= | ![]() |
Out[9]= | ![]() |
Express AngerWeberA in terms of the Lommel function LommelS:
In[10]:= | ![]() |
Out[10]= | ![]() |
Verify a differential equation for AngerWeberA:
In[11]:= | ![]() |
Out[11]= | ![]() |
Verify a recurrence identity for AngerWeberA:
In[12]:= | ![]() |
Out[12]= | ![]() |
An identity relating AngerWeberA and AngerJ:
In[13]:= | ![]() |
Out[13]= | ![]() |
An identity relating AngerWeberA and WeberE:
In[14]:= | ![]() |
Out[14]= | ![]() |
This work is licensed under a Creative Commons Attribution 4.0 International License