Wolfram Function Repository
Instant-use add-on functions for the Wolfram Language
Function Repository Resource:
Evaluate the Bickley function
ResourceFunction["BickleyKi"][n,z] gives the Bickley function Kin(z). |
Evaluate numerically:
In[1]:= | ![]() |
Out[1]= | ![]() |
Plot Ki1(z):
In[2]:= | ![]() |
Out[2]= | ![]() |
Series at the origin:
In[3]:= | ![]() |
Out[3]= | ![]() |
Evaluate for complex arguments and orders:
In[4]:= | ![]() |
Out[4]= | ![]() |
Evaluate to high precision:
In[5]:= | ![]() |
Out[5]= | ![]() |
The precision of the output tracks the precision of the input:
In[6]:= | ![]() |
Out[6]= | ![]() |
BickleyKi threads elementwise over lists:
In[7]:= | ![]() |
Out[7]= | ![]() |
Plot a complex-ordered Bickley function over the complex plane:
In[8]:= | ![]() |
Out[8]= | ![]() |
Average probability that a neutron travels across two parallel lines separated by a distance h without a collision:
In[9]:= | ![]() |
Out[9]= | ![]() |
Compare with the integral representation:
In[10]:= | ![]() |
Out[10]= | ![]() |
Express a modified Bessel function of the second kind as a finite sum of Bickley functions:
In[11]:= | ![]() |
Out[11]= | ![]() |
For n=0, BickleyKi is equal to K0(z):
In[12]:= | ![]() |
Out[12]= | ![]() |
For n>0, BickleyKi is equal to an iterated integral of K0(z):
In[13]:= | ![]() |
Out[13]= | ![]() |
For n<0, BickleyKi is equal to (-1)nd-nK0(z)/dz-n:
In[14]:= | ![]() |
Out[14]= | ![]() |
Express a Bickley function of noninteger order in terms of simpler functions:
In[15]:= | ![]() |
Out[15]= | ![]() |
Compare BickleyKi with the integral definition:
In[16]:= | ![]() |
Out[16]= | ![]() |
Machine precision is not sufficient to obtain the correct result:
In[17]:= | ![]() |
Out[17]= | ![]() |
Use arbitrary-precision arithmetic instead:
In[18]:= | ![]() |
Out[18]= | ![]() |
This work is licensed under a Creative Commons Attribution 4.0 International License