Wolfram Function Repository
Instant-use add-on functions for the Wolfram Language
Function Repository Resource:
Construct a least-squares trigonometric fit to data
ResourceFunction["TrigFit"][data,n,x] gives the least‐squares trigonometric fit to data up to cos(nx) and sin(nx), with fundamental period 2π. | |
ResourceFunction["TrigFit"][data,n,{x,L}] gives the least‐squares trigonometric fit to data up to cos(2πnx/L) and sin(2πnx/L), with fundamental period L. | |
ResourceFunction["TrigFit"][data,n,{x,x0,x1}] gives the least‐squares trigonometric fit to data up to cos(2πn(x-x0)/(x1-x0)) and sin(2πn(x-x0)/(x1-x0)), with fundamental period x1-x0. |
Generate data corresponding to one period of a periodic function:
In[1]:= | ![]() |
Construct a low-order trigonometric fit:
In[2]:= | ![]() |
Out[2]= | ![]() |
Show the fit along with the original data:
In[3]:= | ![]() |
Out[3]= | ![]() |
Generate samples from a periodic function:
In[4]:= | ![]() |
Out[4]= | ![]() |
Trigonometric fit over [0,2π]:
In[5]:= | ![]() |
Out[5]= | ![]() |
Trigonometric fit over [0,ℒ]:
In[6]:= | ![]() |
Out[6]= | ![]() |
Trigonometric fit over [x0,x1]:
In[7]:= | ![]() |
Out[7]= | ![]() |
Sample points over a closed curve:
In[8]:= | ![]() |
Out[8]= | ![]() |
Plot the trigonometric fit along with the original data:
In[9]:= | ![]() |
Out[9]= | ![]() |
Generate samples from a periodic function:
In[10]:= | ![]() |
Out[10]= | ![]() |
Use TrigFit to construct the trigonometric fit:
In[11]:= | ![]() |
Out[11]= | ![]() |
Use Fit to construct the trigonometric fit:
In[12]:= | ![]() |
Out[12]= | ![]() |
Sample points on a knot:
In[13]:= | ![]() |
Construct a low-order trigonometric fit from the data:
In[14]:= | ![]() |
Out[14]= | ![]() |
Plot the trigonometric fit of the knot, and compare with the result of KnotData:
In[15]:= | ![]() |
Out[15]= | ![]() |
This work is licensed under a Creative Commons Attribution 4.0 International License