Wolfram Function Repository
Instant-use add-on functions for the Wolfram Language
Function Repository Resource:
Construct a least-squares trigonometric fit to data
ResourceFunction["TrigFit"][data,n,x] gives the least‐squares trigonometric fit to data up to cos(nx) and sin(nx), with fundamental period 2π. | |
ResourceFunction["TrigFit"][data,n,{x,L}] gives the least‐squares trigonometric fit to data up to cos(2πnx/L) and sin(2πnx/L), with fundamental period L. | |
ResourceFunction["TrigFit"][data,n,{x,x0,x1}] gives the least‐squares trigonometric fit to data up to cos(2πn(x-x0)/(x1-x0)) and sin(2πn(x-x0)/(x1-x0)), with fundamental period x1-x0. |
Generate data corresponding to one period of a periodic function:
In[1]:= |
Construct a low-order trigonometric fit:
In[2]:= |
Out[2]= |
Show the fit along with the original data:
In[3]:= |
Out[3]= |
Generate samples from a periodic function:
In[4]:= |
Out[4]= |
Trigonometric fit over [0,2π]:
In[5]:= |
Out[5]= |
Trigonometric fit over [0,ℒ]:
In[6]:= |
Out[6]= |
Trigonometric fit over [x0,x1]:
In[7]:= |
Out[7]= |
Sample points over a closed curve:
In[8]:= |
Out[8]= |
Plot the trigonometric fit along with the original data:
In[9]:= |
Out[9]= |
Generate samples from a periodic function:
In[10]:= |
Out[10]= |
Use TrigFit to construct the trigonometric fit:
In[11]:= |
Out[11]= |
Use Fit to construct the trigonometric fit:
In[12]:= |
Out[12]= |
Sample points on a knot:
In[13]:= |
Construct a low-order trigonometric fit from the data:
In[14]:= |
Out[14]= |
Plot the trigonometric fit of the knot, and compare with the result of KnotData:
In[15]:= |
Out[15]= |
This work is licensed under a Creative Commons Attribution 4.0 International License