Wolfram Function Repository
Instant-use add-on functions for the Wolfram Language
Function Repository Resource:
Evaluate the divided difference of a finite orthogonal polynomial series
ResourceFunction["OrthogonalPolynomialDividedDifference"][cof,poly,x,y] evaluates the divided difference , where ci is the (i+1)th element of the list cof. |
"ChebyshevFirst" | Chebyshev polynomial of the first kind ChebyshevT[i,x] |
"ChebyshevSecond" | Chebyshev polynomial of the second kind ChebyshevU[i,x] |
"Hermite" | Hermite polynomial HermiteH[i,x] |
"Laguerre" | Laguerre polynomial LaguerreL[i,x] |
"Legendre" | Legendre polynomial LegendreP[i,x] |
{"Gegenbauer",m} | Gegenbauer polynomial GegenbauerC[i,m,x] |
{"Laguerre",a} | associated Laguerre polynomial LaguerreL[i,a,x] |
{"Jacobi",a,b} | Jacobi polynomial JacobiP[i,a,b,x] |
Divided difference of a Laguerre series:
In[1]:= |
|
Out[1]= |
|
Compare with an explicit evaluation using the resource function OrthogonalPolynomialSum:
In[2]:= |
|
Out[2]= |
|
Divided difference of a Jacobi series with symbolic coefficients, parameters and arguments:
In[3]:= |
|
Out[3]= |
|
An equivalent specification:
In[4]:= |
|
Out[4]= |
|
Directly evaluating the divided difference using the resource function OrthogonalPolynomialSum gives a result that is not very accurate:
In[5]:= |
|
Out[5]= |
|
OrthogonalPolynomialDividedDifference gives a more accurate result:
In[6]:= |
|
Out[6]= |
|
Evaluate the q-derivative of a Chebyshev series:
In[7]:= |
|
Out[7]= |
|
In the limit q→1, the q-derivative reduces to the derivative:
In[8]:= |
|
Out[8]= |
|
In[9]:= |
|
Out[9]= |
|
OrthogonalPolynomialDividedDifference is symmetric in the arguments x and y:
In[10]:= |
|
Out[10]= |
|
If x=y, the result of OrthogonalPolynomialDividedDifference is equal to the derivative of the orthogonal polynomial series, evaluated at x:
In[11]:= |
|
Out[11]= |
|
This work is licensed under a Creative Commons Attribution 4.0 International License