Wolfram Function Repository
Instant-use add-on functions for the Wolfram Language
Function Repository Resource:
Evaluate a finite orthogonal polynomial series
ResourceFunction["OrthogonalPolynomialSum"][f,poly,x,{i,imin,imax}] evaluates the sum , where pi(x) is an orthogonal polynomial represented by poly. | |
ResourceFunction["OrthogonalPolynomialSum"][cof,poly,x] evaluates the sum , where ci is the (i+1)th element of the list cof. |
"ChebyshevFirst" | Chebyshev polynomial of the first kind ChebyshevT[i,x] |
"ChebyshevSecond" | Chebyshev polynomial of the second kind ChebyshevU[i,x] |
"Hermite" | Hermite polynomial HermiteH[i,x] |
"Laguerre" | Laguerre polynomial LaguerreL[i,x] |
"Legendre" | Legendre polynomial LegendreP[i,x] |
{"Gegenbauer",m} | Gegenbauer polynomial GegenbauerC[i,m,x] |
{"Laguerre",a} | associated Laguerre polynomial LaguerreL[i,a,x] |
{"Jacobi",a,b} | Jacobi polynomial JacobiP[i,a,b,x] |
Evaluate a finite Laguerre sum:
In[1]:= |
|
Out[1]= |
|
Compare with the result of Sum:
In[2]:= |
|
Out[2]= |
|
Evaluate a finite Jacobi sum with symbolic coefficients and parameters:
In[3]:= |
|
Out[3]= |
|
Compare with an explicit summation:
In[4]:= |
|
Out[4]= |
|
Evaluate a partial sum of a Gegenbauer series:
In[5]:= |
|
Out[5]= |
|
Compare with an explicit summation:
In[6]:= |
|
Out[6]= |
|
Evaluate a finite Hermite sum with coefficients supplied from a list:
In[7]:= |
|
Out[7]= |
|
Compare with an explicit evaluation:
In[8]:= |
|
Out[8]= |
|
Generate random coefficients of a Legendre series:
In[9]:= |
|
Evaluating the Legendre series with OrthogonalPolynomialSum is faster than using LegendreP:
In[10]:= |
|
Out[10]= |
|
In[11]:= |
|
Out[11]= |
|
The result obtained through OrthogonalPolynomialSum also has a slightly smaller error:
In[12]:= |
|
Out[12]= |
|
In[13]:= |
|
Out[13]= |
|
In[14]:= |
|
Out[14]= |
|
This work is licensed under a Creative Commons Attribution 4.0 International License