Wolfram Function Repository
Instant-use add-on functions for the Wolfram Language
Function Repository Resource:
Solve an orthogonal polynomial Vandermonde linear system
ResourceFunction["OrthogonalPolynomialVandermondeSolve"][poly,{a1,a2,…},{b1,b2,…}] solves the primal Vandermonde problem V.x==b, where V(a1,a2,…) is the orthogonal polynomial Vandermonde matrix with respect to the basis represented by poly. |
"ChebyshevFirst" | Chebyshev polynomial of the first kind ChebyshevT[i,x] |
"ChebyshevSecond" | Chebyshev polynomial of the second kind ChebyshevU[i,x] |
"Hermite" | Hermite polynomial HermiteH[i,x] |
"Laguerre" | Laguerre polynomial LaguerreL[i,x] |
"Legendre" | Legendre polynomial LegendreP[i,x] |
{"Gebenbauer",m} | Gegenbauer polynomial GegenbauerC[i,m,x] |
{"Laguerre",a} | associated Laguerre polynomial LaguerreL[i,a,x] |
{"Jacobi",a,b} | Jacobi polynomial JacobiP[i,a,b,x] |
Solve a Chebyshev–Vandermonde system:
In[1]:= |
|
Out[1]= |
|
Solve a Jacobi–Vandermonde system with symbolic parameters and vectors:
In[2]:= |
|
Out[2]= |
|
An equivalent specification:
In[3]:= |
|
Out[3]= |
|
Solve a Hermite–Vandermonde system with numeric vectors:
In[4]:= |
|
Out[4]= |
|
Get the Legendre series coefficients of an interpolating polynomial:
In[9]:= |
|
Out[10]= |
|
Use the resource function OrthogonalPolynomialSum to get the corresponding orthogonal polynomial series, and compare with the result of InterpolatingPolynomial:
In[11]:= |
|
Out[11]= |
|
OrthogonalPolynomialVandermondeSolve is more efficient than using LinearSolve on an orthogonal polynomial Vandermonde system:
In[12]:= |
|
In[13]:= |
|
Out[13]= |
|
In[14]:= |
|
Out[14]= |
|
The result of OrthogonalPolynomialVandermondeSolve is also often more accurate:
In[15]:= |
|
In[16]:= |
|
Out[16]= |
|
In[17]:= |
|
Out[17]= |
|
This work is licensed under a Creative Commons Attribution 4.0 International License