Wolfram Function Repository
Instant-use add-on functions for the Wolfram Language
Function Repository Resource:
Visualize the evolution of a one-dimensional neighbor-independent substitution system
ResourceFunction["SubstitutionSystemPlot"][rule,init,t] visualizes the evolution of the list substitution system with the specified rule from initial condition init for t steps. | |
ResourceFunction["SubstitutionSystemPlot"][rule,init,{t1,t2}] visualizes the evolution from steps t1 through t2. |
Alignment | Center | alignment of the boxes used to visualize the steps |
Appearance | Automatic | overall appearance |
ColorRules | Automatic | rules for determining colors from values |
Mesh | Automatic | whether to draw a mesh |
MeshStyle | Automatic | the style to use for a mesh |
Offset | Automatic | offsets for the boxes used to visualize the steps |
Show five steps of a string substitution system:
In[1]:= | ![]() |
Out[1]= | ![]() |
Show as an array:
In[2]:= | ![]() |
Out[2]= | ![]() |
Show only the second to fourth steps:
In[3]:= | ![]() |
Out[3]= | ![]() |
Show the second to fourth steps as an array:
In[4]:= | ![]() |
Out[4]= | ![]() |
Show only the first step:
In[5]:= | ![]() |
Out[5]= | ![]() |
Show the first step as an array:
In[6]:= | ![]() |
Out[6]= | ![]() |
Use any symbol:
In[7]:= | ![]() |
Out[7]= | ![]() |
In[8]:= | ![]() |
Out[8]= | ![]() |
Lists do not have to be the same length:
In[9]:= | ![]() |
Out[9]= | ![]() |
In[10]:= | ![]() |
Out[10]= | ![]() |
The initial condition can be of any length:
In[11]:= | ![]() |
Out[11]= | ![]() |
In[12]:= | ![]() |
Out[12]= | ![]() |
Rules can involve patterns:
In[13]:= | ![]() |
Out[13]= | ![]() |
In[14]:= | ![]() |
Out[14]= | ![]() |
In[15]:= | ![]() |
Out[15]= | ![]() |
In[16]:= | ![]() |
Out[16]= | ![]() |
Use a string substitution system:
In[17]:= | ![]() |
Out[17]= | ![]() |
In[18]:= | ![]() |
Out[18]= | ![]() |
Different alignment formats for SubstitutionSystemPlot:
In[19]:= | ![]() |
Out[19]= | ![]() |
Show as boxes:
In[20]:= | ![]() |
Out[20]= | ![]() |
Show as an array:
In[21]:= | ![]() |
Out[21]= | ![]() |
Show as a tree:
In[22]:= | ![]() |
Out[22]= | ![]() |
Specify color rules for explicit values or patterns:
In[23]:= | ![]() |
Out[23]= | ![]() |
In[24]:= | ![]() |
Out[24]= | ![]() |
In[25]:= | ![]() |
Out[25]= | ![]() |
Implement a “default color” by adding a rule for _:
In[26]:= | ![]() |
Out[26]= | ![]() |
In[27]:= | ![]() |
Out[27]= | ![]() |
In[28]:= | ![]() |
Out[28]= | ![]() |
Show with and without the mesh:
In[29]:= | ![]() |
Out[29]= | ![]() |
Make the mesh pink:
In[30]:= | ![]() |
Out[30]= | ![]() |
In[31]:= | ![]() |
Out[31]= | ![]() |
Different offsets for SubstitutionSystemPlot:
In[32]:= | ![]() |
Out[32]= | ![]() |
In[33]:= | ![]() |
Out[33]= | ![]() |
Illustrate the Thue-Morse substitution system:
In[34]:= | ![]() |
Out[34]= | ![]() |
In[35]:= | ![]() |
Out[35]= | ![]() |
In[36]:= | ![]() |
Out[36]= | ![]() |
Illustrate the substitution system for the Cantor set:
In[37]:= | ![]() |
Out[37]= | ![]() |
In[38]:= | ![]() |
Out[38]= | ![]() |
In[39]:= | ![]() |
Out[39]= | ![]() |
This work is licensed under a Creative Commons Attribution 4.0 International License