Wolfram Function Repository
Instant-use add-on functions for the Wolfram Language
Function Repository Resource:
Visualize the evolution of a one-dimensional neighbor-independent substitution system
ResourceFunction["SubstitutionSystemPlot"][rule,init,t] visualizes the evolution of the list substitution system with the specified rule from initial condition init for t steps. | |
ResourceFunction["SubstitutionSystemPlot"][rule,init,{t1,t2}] visualizes the evolution from steps t1 through t2. |
| Alignment | Center | alignment of the boxes used to visualize the steps |
| Appearance | Automatic | overall appearance |
| ColorRules | Automatic | rules for determining colors from values |
| Mesh | Automatic | whether to draw a mesh |
| MeshStyle | Automatic | the style to use for a mesh |
| Offset | Automatic | offsets for the boxes used to visualize the steps |
Show five steps of a string substitution system:
| In[1]:= |
| Out[1]= | ![]() |
Show as an array:
| In[2]:= |
| Out[2]= | ![]() |
Show only the second to fourth steps:
| In[3]:= |
| Out[3]= | ![]() |
Show the second to fourth steps as an array:
| In[4]:= |
| Out[4]= | ![]() |
Show only the first step:
| In[5]:= |
| Out[5]= | ![]() |
Show the first step as an array:
| In[6]:= |
| Out[6]= | ![]() |
Use any symbol:
| In[7]:= |
| Out[7]= | ![]() |
| In[8]:= |
| Out[8]= | ![]() |
Lists do not have to be the same length:
| In[9]:= |
| Out[9]= | ![]() |
| In[10]:= |
| Out[10]= | ![]() |
The initial condition can be of any length:
| In[11]:= |
| Out[11]= | ![]() |
| In[12]:= |
| Out[12]= | ![]() |
Rules can involve patterns:
| In[13]:= |
| Out[13]= | ![]() |
| In[14]:= |
| Out[14]= | ![]() |
| In[15]:= |
| Out[15]= | ![]() |
| In[16]:= |
| Out[16]= | ![]() |
Use a string substitution system:
| In[17]:= |
| Out[17]= | ![]() |
| In[18]:= |
| Out[18]= | ![]() |
Different alignment formats for SubstitutionSystemPlot:
| In[19]:= |
| Out[19]= | ![]() |
Show as boxes:
| In[20]:= |
| Out[20]= | ![]() |
Show as an array:
| In[21]:= |
| Out[21]= | ![]() |
Show as a tree:
| In[22]:= |
| Out[22]= | ![]() |
Specify color rules for explicit values or patterns:
| In[23]:= |
| Out[23]= | ![]() |
| In[24]:= |
| Out[24]= | ![]() |
| In[25]:= |
| Out[25]= | ![]() |
Implement a “default color” by adding a rule for _:
| In[26]:= |
| Out[26]= | ![]() |
| In[27]:= |
| Out[27]= | ![]() |
| In[28]:= |
| Out[28]= | ![]() |
Show with and without the mesh:
| In[29]:= | ![]() |
| Out[29]= | ![]() |
Make the mesh pink:
| In[30]:= |
| Out[30]= | ![]() |
| In[31]:= |
| Out[31]= | ![]() |
Different offsets for SubstitutionSystemPlot:
| In[32]:= | ![]() |
| Out[32]= | ![]() |
| In[33]:= | ![]() |
| Out[33]= | ![]() |
Illustrate the Thue-Morse substitution system:
| In[34]:= |
| Out[34]= | ![]() |
| In[35]:= |
| Out[35]= | ![]() |
| In[36]:= |
| Out[36]= | ![]() |
Illustrate the substitution system for the Cantor set:
| In[37]:= |
| Out[37]= | ![]() |
| In[38]:= |
| Out[38]= | ![]() |
| In[39]:= |
| Out[39]= | ![]() |
This work is licensed under a Creative Commons Attribution 4.0 International License