Wolfram Function Repository
Instant-use add-on functions for the Wolfram Language
Function Repository Resource:
Evaluate the Neumann polynomial
ResourceFunction["NeumannO"][n,z] gives the Neumann polynomial On(z) . |

Evaluate numerically:
| In[1]:= |
| Out[1]= |
Evaluate Neumann polynomials for various orders:
| In[2]:= |
| Out[2]= |
Plot with respect to z:
| In[3]:= |
| Out[3]= | ![]() |
Evaluate for complex arguments:
| In[4]:= |
| Out[4]= |
Evaluate to high precision:
| In[5]:= |
| Out[5]= |
The precision of the output tracks the precision of the input:
| In[6]:= |
| Out[6]= |
NeumannO threads elementwise over lists:
| In[7]:= |
| Out[7]= |
Define a function:
Use NeumannO to expand a function in a Bessel function series:
| In[8]:= | ![]() |
| Out[8]= | ![]() |
Compare the function with its Bessel series approximation:
| In[9]:= |
| Out[9]= | ![]() |
Derivatives of Neumann polynomials are related to the polynomials themselves via
:
| In[10]:= | ![]() |
| Out[10]= |
Neumann polynomials satisfy the differential equation
:
| In[11]:= | ![]() |
| Out[11]= |
Neumann polynomials satisfy the recurrence identity
:
| In[12]:= | ![]() |
| Out[12]= |
The Neumann polynomials have the limiting behavior given by
:
| In[13]:= |
| Out[13]= |
Neumann polynomials can be represented as the finite sum
:
| In[14]:= | ![]() |
| Out[14]= |
The Neumann polynomials can be expressed in terms of HypergeometricPFQ through the formula
:
| In[15]:= | ![]() |
| Out[15]= |
Neumann polynomials can be expressed in terms of the Lommel function:
| In[16]:= | ![]() |
| Out[16]= |
Neumann polynomials can be expressed in terms of the Schläfli polynomial:
| In[17]:= | ![]() |
| Out[17]= |
This work is licensed under a Creative Commons Attribution 4.0 International License