Wolfram Function Repository
Instant-use add-on functions for the Wolfram Language
Function Repository Resource:
Evaluate the Neumann polynomial
ResourceFunction["NeumannO"][n,z] gives the Neumann polynomial On(z) . |
Evaluate numerically:
In[1]:= | ![]() |
Out[1]= | ![]() |
Evaluate Neumann polynomials for various orders:
In[2]:= | ![]() |
Out[2]= | ![]() |
Plot with respect to z:
In[3]:= | ![]() |
Out[3]= | ![]() |
Evaluate for complex arguments:
In[4]:= | ![]() |
Out[4]= | ![]() |
Evaluate to high precision:
In[5]:= | ![]() |
Out[5]= | ![]() |
The precision of the output tracks the precision of the input:
In[6]:= | ![]() |
Out[6]= | ![]() |
NeumannO threads elementwise over lists:
In[7]:= | ![]() |
Out[7]= | ![]() |
Define a function:
Use NeumannO to expand a function in a Bessel function series:
In[8]:= | ![]() |
Out[8]= | ![]() |
Compare the function with its Bessel series approximation:
In[9]:= | ![]() |
Out[9]= | ![]() |
Derivatives of Neumann polynomials are related to the polynomials themselves via :
In[10]:= | ![]() |
Out[10]= | ![]() |
Neumann polynomials satisfy the differential equation :
In[11]:= | ![]() |
Out[11]= | ![]() |
Neumann polynomials satisfy the recurrence identity :
In[12]:= | ![]() |
Out[12]= | ![]() |
The Neumann polynomials have the limiting behavior given by :
In[13]:= | ![]() |
Out[13]= | ![]() |
Neumann polynomials can be represented as the finite sum :
In[14]:= | ![]() |
Out[14]= | ![]() |
The Neumann polynomials can be expressed in terms of HypergeometricPFQ through the formula :
In[15]:= | ![]() |
Out[15]= | ![]() |
Neumann polynomials can be expressed in terms of the Lommel function:
In[16]:= | ![]() |
Out[16]= | ![]() |
Neumann polynomials can be expressed in terms of the Schläfli polynomial:
In[17]:= | ![]() |
Out[17]= | ![]() |
This work is licensed under a Creative Commons Attribution 4.0 International License