Wolfram Function Repository
Instant-use add-on functions for the Wolfram Language
Function Repository Resource:
Evaluate the Neumann polynomial
ResourceFunction["NeumannO"][n,z] gives the Neumann polynomial On(z) . |
Evaluate numerically:
In[1]:= |
Out[1]= |
Evaluate Neumann polynomials for various orders:
In[2]:= |
Out[2]= |
Plot with respect to z:
In[3]:= |
Out[3]= |
Evaluate for complex arguments:
In[4]:= |
Out[4]= |
Evaluate to high precision:
In[5]:= |
Out[5]= |
The precision of the output tracks the precision of the input:
In[6]:= |
Out[6]= |
NeumannO threads elementwise over lists:
In[7]:= |
Out[7]= |
Define a function:
Use NeumannO to expand a function in a Bessel function series:
In[8]:= |
Out[8]= |
Compare the function with its Bessel series approximation:
In[9]:= |
Out[9]= |
Derivatives of Neumann polynomials are related to the polynomials themselves via :
In[10]:= |
Out[10]= |
Neumann polynomials satisfy the differential equation :
In[11]:= |
Out[11]= |
Neumann polynomials satisfy the recurrence identity :
In[12]:= |
Out[12]= |
The Neumann polynomials have the limiting behavior given by :
In[13]:= |
Out[13]= |
Neumann polynomials can be represented as the finite sum :
In[14]:= |
Out[14]= |
The Neumann polynomials can be expressed in terms of HypergeometricPFQ through the formula :
In[15]:= |
Out[15]= |
Neumann polynomials can be expressed in terms of the Lommel function:
In[16]:= |
Out[16]= |
Neumann polynomials can be expressed in terms of the Schläfli polynomial:
In[17]:= |
Out[17]= |
This work is licensed under a Creative Commons Attribution 4.0 International License