Wolfram Function Repository
Instant-use add-on functions for the Wolfram Language
Function Repository Resource:
Evaluate the irregular solid harmonic function
ResourceFunction["SolidHarmonicI"][l,m,x,y,z] gives the irregular solid harmonic . |
Evaluate symbolically:
In[1]:= |
Out[1]= |
Plot over a subset of the reals:
In[2]:= |
Out[2]= |
Evaluate to high precision:
In[3]:= |
Out[3]= |
The precision of the output tracks the precision of the input:
In[4]:= |
Out[4]= |
SolidHarmonicR threads elementwise over lists:
In[5]:= |
Out[5]= |
Plot a real linear combination of irregular solid harmonics:
In[6]:= |
Out[6]= |
The irregular solid harmonic satisfies the Laplace equation:
In[7]:= |
Out[7]= |
SolidHarmonicI uses Racah's normalization:
In[8]:= |
Out[8]= |
SolidHarmonicI can be expressed in terms of SphericalHarmonicY:
In[9]:= |
Out[9]= |
This work is licensed under a Creative Commons Attribution 4.0 International License