Wolfram Function Repository
Instant-use add-on functions for the Wolfram Language
Function Repository Resource:
Evaluate the irregular solid harmonic function
ResourceFunction["SolidHarmonicI"][l,m,x,y,z] gives the irregular solid harmonic |
Evaluate symbolically:
| In[1]:= |
| Out[1]= | ![]() |
Plot over a subset of the reals:
| In[2]:= |
| Out[2]= | ![]() |
Evaluate to high precision:
| In[3]:= |
| Out[3]= |
The precision of the output tracks the precision of the input:
| In[4]:= |
| Out[4]= |
SolidHarmonicR threads elementwise over lists:
| In[5]:= |
| Out[5]= | ![]() |
Plot a real linear combination of irregular solid harmonics:
| In[6]:= | ![]() |
| Out[6]= | ![]() |
The irregular solid harmonic satisfies the Laplace equation:
| In[7]:= |
| Out[7]= |
SolidHarmonicI uses Racah's normalization:
| In[8]:= | ![]() |
| Out[8]= |
SolidHarmonicI can be expressed in terms of SphericalHarmonicY:
| In[9]:= | ![]() |
| Out[9]= |
This work is licensed under a Creative Commons Attribution 4.0 International License