Wolfram Function Repository
Instant-use add-on functions for the Wolfram Language
Function Repository Resource:
Get the resistance matrix of a graph
ResourceFunction["ResistanceMatrix"][g] gives the resistance matrix of the graph g. |
Compute the resistance matrix of the tetrahedral graph:
In[1]:= |
Out[1]= |
Compare with the result of GraphData:
In[2]:= |
Out[2]= |
Compute the resistance matrix of the dodecahedral graph:
In[3]:= |
Out[3]= |
Get all the unique resistance distances:
In[4]:= |
Out[4]= |
Compute the resistance matrix of a large graph:
In[5]:= |
Out[5]= |
Visualize the resistance matrix:
In[6]:= |
Out[6]= |
A graph:
In[7]:= |
Define a function for computing the Kirchhoff index:
In[8]:= |
Compute the Kirchhoff index:
In[9]:= |
Out[9]= |
Define a function for computing the Kirchhoff sum index:
In[10]:= |
Compute the Kirchhoff sum index:
In[11]:= |
Out[11]= |
Visualize the resistance matrices of the Archimedean graphs:
In[12]:= |
Out[12]= |
Rows and columns of the resistance matrix follow the order given by VertexList:
In[13]:= |
Out[13]= |
In[14]:= |
Out[14]= |
In[15]:= |
Out[15]= |
The number of rows or columns of the resistance matrix is equal to the number of vertices:
In[16]:= |
Out[16]= |
In[17]:= |
Out[17]= |
In[18]:= |
Out[18]= |
A pair of graphs with the same resistance spectra, due to Rickard:
In[19]:= |
Out[19]= |
The two graphs are not isomorphic:
In[20]:= |
Out[20]= |
Compute their respective resistance spectra:
In[21]:= |
Check that they are identical:
In[22]:= |
Out[22]= |
Wolfram Language 12.3 (May 2021) or above
This work is licensed under a Creative Commons Attribution 4.0 International License