Wolfram Function Repository
Instant-use add-on functions for the Wolfram Language
Function Repository Resource:
Get the resistance matrix of a graph
ResourceFunction["ResistanceMatrix"][g] gives the resistance matrix of the graph g. |
Compute the resistance matrix of the tetrahedral graph:
| In[1]:= |
| Out[1]= |
Compare with the result of GraphData:
| In[2]:= |
| Out[2]= |
Compute the resistance matrix of the dodecahedral graph:
| In[3]:= | ![]() |
| Out[3]= |
Get all the unique resistance distances:
| In[4]:= |
| Out[4]= |
Compute the resistance matrix of a large graph:
| In[5]:= |
| Out[5]= |
Visualize the resistance matrix:
| In[6]:= |
| Out[6]= | ![]() |
A graph:
| In[7]:= | ![]() |
Define a function for computing the Kirchhoff index:
| In[8]:= |
Compute the Kirchhoff index:
| In[9]:= |
| Out[9]= |
Define a function for computing the Kirchhoff sum index:
| In[10]:= | ![]() |
Compute the Kirchhoff sum index:
| In[11]:= |
| Out[11]= |
Visualize the resistance matrices of the Archimedean graphs:
| In[12]:= | ![]() |
| Out[12]= | ![]() |
Rows and columns of the resistance matrix follow the order given by VertexList:
| In[13]:= |
| Out[13]= | ![]() |
| In[14]:= |
| Out[14]= |
| In[15]:= |
| Out[15]= | ![]() |
The number of rows or columns of the resistance matrix is equal to the number of vertices:
| In[16]:= |
| Out[16]= | ![]() |
| In[17]:= |
| Out[17]= |
| In[18]:= |
| Out[18]= |
A pair of graphs with the same resistance spectra, due to Rickard:
| In[19]:= |
| Out[19]= | ![]() |
The two graphs are not isomorphic:
| In[20]:= |
| Out[20]= |
Compute their respective resistance spectra:
| In[21]:= | ![]() |
Check that they are identical:
| In[22]:= |
| Out[22]= |
Wolfram Language 12.3 (May 2021) or above
This work is licensed under a Creative Commons Attribution 4.0 International License