Wolfram Function Repository
Instant-use add-on functions for the Wolfram Language
Function Repository Resource:
Find the partition of a triangle into cevian triangles with congruent incircles
ResourceFunction["CongruentIncirclePartition"][{p1,p2,p3},n] partition a triangle defined by vertices p1,p2 and p3 into cevian triangles that share vertex p1 and the same inradius. |
"Partitions" | The number n of cevian triangles |
"Inradius" | The radius of the incircle in each cevian triangle |
"Incircles" | The congruent incircles |
"CevianEndpoints" | The vertices of each cevian triangle other than p1 on segment p2p3 |
"CevianTriangles" | Cevian triangles from by p1and two adjacent in "CevianEndpoints" |
Return an association containing the information of a partition of a given triangle into subtriangles sharing incircles of same size:
In[1]:= | ![]() |
Out[2]= | ![]() |
Find a cevian partition of a given triangle into 7 triangle with incircles of same size:
In[3]:= | ![]() |
In[4]:= | ![]() |
In[5]:= | ![]() |
Out[6]= | ![]() |
For each orientation, find a 4-part cevian partition:
In[7]:= | ![]() |
In[8]:= | ![]() |
In[9]:= | ![]() |
Out[9]= | ![]() |
Certain triangles with integral sides also have integral inradii in a cevian triangle partition:
In[10]:= | ![]() |
In[11]:= | ![]() |
Out[11]= | ![]() |
In[12]:= | ![]() |
In[13]:= | ![]() |
Out[13]= | ![]() |
The number of partition must be at least 2. Otherwise the function returns unevaluated:
In[14]:= | ![]() |
Out[14]= | ![]() |
In[15]:= | ![]() |
Out[15]= | ![]() |
Degenerate triangles are not supported. The function returns unevaluated:
In[16]:= | ![]() |
Out[16]= | ![]() |
Perturb one vertex to create a non-degenerate case:
In[17]:= | ![]() |
Out[17]= | ![]() |
Coordinates must be real numeric values. Otherwise the function returns unevaluated:
In[18]:= | ![]() |
Out[18]= | ![]() |
Given an arbitrary triangle, let n-1 cevians be drawn from one of its vertices so all of the n triangles so determined have equal incircles. Then the incircles determined by spanning 2, 3,…, n-1 adjacent triangles are also equal (Wells 1991, p. 67). For instance, a spanning set of size 2:
In[19]:= | ![]() |
Check the inradii:
In[20]:= | ![]() |
Out[21]= | ![]() |
Visualize the cevian triangles and the incircles:
In[22]:= | ![]() |
In[23]:= | ![]() |
Out[23]= | ![]() |
Show the same result for spanning 3 adjacent intervals:
In[24]:= | ![]() |
Out[25]= | ![]() |
In[26]:= | ![]() |
Out[26]= | ![]() |
The observation follows this general argument: in triangle TSR if two cevian triangles TSU and TVR have the same inradius, so do triangles TSV and TUR:
In[27]:= | ![]() |
Out[28]= | ![]() |
Visually verify the argument:
In[29]:= | ![]() |
In[30]:= | ![]() |
In[31]:= | ![]() |
Out[31]= | ![]() |
Wolfram Language 14.0 (January 2024) or above
This work is licensed under a Creative Commons Attribution 4.0 International License