Wolfram Function Repository
Instant-use add-on functions for the Wolfram Language
Function Repository Resource:
A generalized sigmoidal interpolating polynomial
ResourceFunction["GeneralizedSmoothStep"][n,x] is the generalized smoothstep function of order n at position x. |
Interpolate at a position on a step:
In[1]:= |
Out[1]= |
Show the smooth steps for multiple orders:
In[2]:= |
Out[2]= |
Evaluate at an exact position:
In[3]:= |
Out[3]= |
At a numeric position:
In[4]:= |
Out[4]= |
GeneralizedSmoothStep threads over lists:
In[5]:= |
Out[5]= |
In[6]:= |
Out[6]= |
Successive derivatives of GeneralizedSmoothStep can be expressed in terms of Piecewise:
In[7]:= |
Out[7]= |
Plot successive derivatives:
In[8]:= |
Out[8]= |
Use GeneralizedSmoothStep to implement a "smooth" version of Hue (reference):
In[9]:= |
In[10]:= |
Out[10]= |
In[11]:= |
Out[11]= |
GeneralizedSmoothStep is continuous from the left at x=0:
In[12]:= |
Out[12]= |
In[13]:= |
Out[13]= |
In[14]:= |
Out[14]= |
GeneralizedSmoothStep is continuous from the right at x=1:
In[15]:= |
Out[15]= |
In[16]:= |
Out[16]= |
In[17]:= |
Out[17]= |
GeneralizedSmoothStep[0,x] is equivalent to Clip:
In[18]:= |
Out[18]= |
GeneralizedSmoothStep[1,x] is equivalent to the resource function SmoothStep:
In[19]:= |
Out[19]= |
GeneralizedSmoothStep[2,x] is equivalent to the resource function SmootherStep:
In[20]:= |
Out[20]= |
GeneralizedSmoothStep can be expressed in terms of InterpolatingPolynomial and Clip:
In[21]:= |
In[22]:= |
Out[22]= |
GeneralizedSmoothStep can be expressed in terms of BetaRegularized and Clip:
In[23]:= |
In[24]:= |
Out[24]= |
GeneralizedSmoothStep is undefined for nonpositive integer orders:
In[25]:= |
Out[25]= |
GeneralizedSmoothStep is undefined for complex arguments:
In[26]:= |
Out[26]= |
GeneralizedSmoothStep[n,x] is (n+1)th-order discontinuous at x=0 and x=1:
In[27]:= |
Out[27]= |
Use GeneralizedSmoothStep to demonstrate "ease-in / ease-out":
In[28]:= |
Out[28]= |
This work is licensed under a Creative Commons Attribution 4.0 International License