Wolfram Function Repository
Instant-use add-on functions for the Wolfram Language
Function Repository Resource:
Evaluate the associated Anger–Weber function
ResourceFunction["AngerWeberA"][ν,z] gives the associated Anger–Weber function |
Evaluate numerically:
| In[1]:= |
| Out[1]= |
Plot
:
| In[2]:= |
| Out[2]= | ![]() |
Evaluate for complex arguments:
| In[3]:= |
| Out[3]= |
Evaluate to arbitrary precision:
| In[4]:= |
| Out[4]= |
The precision of the output tracks the precision of the input:
| In[5]:= |
| Out[5]= |
Simple exact values are generated automatically:
| In[6]:= |
| Out[6]= |
AngerWeberA threads elementwise over lists:
| In[7]:= |
| Out[7]= |
Use FunctionExpand to expand AngerWeberA into hypergeometric functions:
| In[8]:= |
| Out[8]= | ![]() |
Compare AngerWeberA with the integral definition:
| In[9]:= | ![]() |
| Out[9]= |
Express AngerWeberA in terms of the Lommel function LommelS:
| In[10]:= | ![]() |
| Out[10]= |
Verify a differential equation for AngerWeberA:
| In[11]:= | ![]() |
| Out[11]= |
Verify a recurrence identity for AngerWeberA:
| In[12]:= | ![]() |
| Out[12]= |
An identity relating AngerWeberA and AngerJ:
| In[13]:= |
| Out[13]= |
An identity relating AngerWeberA and WeberE:
| In[14]:= |
| Out[14]= |
This work is licensed under a Creative Commons Attribution 4.0 International License