Wolfram Function Repository
Instant-use add-on functions for the Wolfram Language
Function Repository Resource:
Evaluate the associated Anger–Weber function
ResourceFunction["AngerWeberA"][ν,z] gives the associated Anger–Weber function . |
Evaluate numerically:
In[1]:= |
Out[1]= |
Plot :
In[2]:= |
Out[2]= |
Evaluate for complex arguments:
In[3]:= |
Out[3]= |
Evaluate to arbitrary precision:
In[4]:= |
Out[4]= |
The precision of the output tracks the precision of the input:
In[5]:= |
Out[5]= |
Simple exact values are generated automatically:
In[6]:= |
Out[6]= |
AngerWeberA threads elementwise over lists:
In[7]:= |
Out[7]= |
Use FunctionExpand to expand AngerWeberA into hypergeometric functions:
In[8]:= |
Out[8]= |
Compare AngerWeberA with the integral definition:
In[9]:= |
Out[9]= |
Express AngerWeberA in terms of the Lommel function LommelS:
In[10]:= |
Out[10]= |
Verify a differential equation for AngerWeberA:
In[11]:= |
Out[11]= |
Verify a recurrence identity for AngerWeberA:
In[12]:= |
Out[12]= |
An identity relating AngerWeberA and AngerJ:
In[13]:= |
Out[13]= |
An identity relating AngerWeberA and WeberE:
In[14]:= |
Out[14]= |
This work is licensed under a Creative Commons Attribution 4.0 International License