Wolfram Function Repository
Instant-use add-on functions for the Wolfram Language
Function Repository Resource:
Perform a Schmidt decomposition on a pure discrete quantum state
ResourceFunction["QuantumSchmidtDecomposition"][QuantumDiscreteState[…]] performs a Schmidt decomposition on the specified QuantumDiscreteState. |
Create a two-qubit pure discrete quantum state in the computational basis (default):
In[1]:= |
Out[1]= |
In[2]:= |
Out[2]= |
In[3]:= |
Out[3]= |
Perform a Schmidt decomposition of the state, resulting in a new (Schmidt-decomposed) tensor product basis:
In[4]:= |
Out[4]= |
In[5]:= |
Out[5]= |
In[6]:= |
Out[6]= |
Show the basis elements of the new (Schmidt-decomposed) tensor product basis:
In[7]:= |
Out[7]= |
Perform a full Schmidt decomposition (returning both the decomposed state, and the two individual bases involved in the tensor product):
In[8]:= |
Out[8]= |
In[9]:= |
Out[9]= |
In[10]:= |
Out[10]= |
Perform a Schmidt decomposition of a pure discrete quantum state with more than 2 subsystems by automatically partitioning the state into exactly two subsystems of (approximately) equal size:
In[11]:= |
Out[11]= |
In[12]:= |
Out[12]= |
In[13]:= |
Out[13]= |
In[14]:= |
Out[14]= |
Perform a Schmidt decomposition of a state consisting of two three-dimensional qudits:
In[15]:= |
Out[15]= |
In[16]:= |
Out[16]= |
In[17]:= |
Out[17]= |
In[18]:= |
Out[18]= |
If "GiveFullDecomposition"→False (default), then QuantumSchmidtDecomposition returns only the decomposed state in the (Schmidt-decomposed) tensor product basis:
In[19]:= |
Out[19]= |
In[20]:= |
Out[20]= |
On the other hand, if "GiveFullDecomposition"→True, then QuantumSchmidtDecomposition returns a list consisting of the decomposed state, as well as the two individual bases involved in the tensor product:
In[21]:= |
Out[21]= |
In[22]:= |
Out[22]= |
In[23]:= |
Out[23]= |
In[24]:= |
Out[24]= |
This work is licensed under a Creative Commons Attribution 4.0 International License