Wolfram Function Repository
Instant-use add-on functions for the Wolfram Language
Function Repository Resource:
Perform a Schmidt decomposition on a pure discrete quantum state
ResourceFunction["QuantumSchmidtDecomposition"][QuantumDiscreteState[…]] performs a Schmidt decomposition on the specified QuantumDiscreteState. |
Create a two-qubit pure discrete quantum state in the computational basis (default):
In[1]:= | ![]() |
Out[1]= | ![]() |
In[2]:= | ![]() |
Out[2]= | ![]() |
In[3]:= | ![]() |
Out[3]= | ![]() |
Perform a Schmidt decomposition of the state, resulting in a new (Schmidt-decomposed) tensor product basis:
In[4]:= | ![]() |
Out[4]= | ![]() |
In[5]:= | ![]() |
Out[5]= | ![]() |
In[6]:= | ![]() |
Out[6]= | ![]() |
Show the basis elements of the new (Schmidt-decomposed) tensor product basis:
In[7]:= | ![]() |
Out[7]= | ![]() |
Perform a full Schmidt decomposition (returning both the decomposed state, and the two individual bases involved in the tensor product):
In[8]:= | ![]() |
Out[8]= | ![]() |
In[9]:= | ![]() |
Out[9]= | ![]() |
In[10]:= | ![]() |
Out[10]= | ![]() |
Perform a Schmidt decomposition of a pure discrete quantum state with more than 2 subsystems by automatically partitioning the state into exactly two subsystems of (approximately) equal size:
In[11]:= | ![]() |
Out[11]= | ![]() |
In[12]:= | ![]() |
Out[12]= | ![]() |
In[13]:= | ![]() |
Out[13]= | ![]() |
In[14]:= | ![]() |
Out[14]= | ![]() |
Perform a Schmidt decomposition of a state consisting of two three-dimensional qudits:
In[15]:= | ![]() |
Out[15]= | ![]() |
In[16]:= | ![]() |
Out[16]= | ![]() |
In[17]:= | ![]() |
Out[17]= | ![]() |
In[18]:= | ![]() |
Out[18]= | ![]() |
If "GiveFullDecomposition"→False (default), then QuantumSchmidtDecomposition returns only the decomposed state in the (Schmidt-decomposed) tensor product basis:
In[19]:= | ![]() |
Out[19]= | ![]() |
In[20]:= | ![]() |
Out[20]= | ![]() |
On the other hand, if "GiveFullDecomposition"→True, then QuantumSchmidtDecomposition returns a list consisting of the decomposed state, as well as the two individual bases involved in the tensor product:
In[21]:= | ![]() |
Out[21]= | ![]() |
In[22]:= | ![]() |
Out[22]= | ![]() |
In[23]:= | ![]() |
Out[23]= | ![]() |
In[24]:= | ![]() |
Out[24]= | ![]() |
This work is licensed under a Creative Commons Attribution 4.0 International License