Wolfram Function Repository
Instant-use add-on functions for the Wolfram Language
Function Repository Resource:
Find the Prüfer code associated with a labeled tree
ResourceFunction["LabeledTreeToPruferCode"][g] gives the Prüfer code associated with the labeled tree g. |
The Prüfer code of a labeled tree:
| In[1]:= | ![]() |
| Out[1]= |
Use FromDigits to obtain an integer-valued Prüfer code:
| In[2]:= |
| Out[2]= | ![]() |
| In[3]:= |
| Out[3]= |
| In[4]:= |
| Out[4]= |
For a tree with n vertices, the length of the Prüfer code is n-2:
| In[5]:= |
| Out[5]= | ![]() |
| In[6]:= |
| Out[6]= |
| In[7]:= |
| Out[7]= |
Empty Prüfer code corresponds to a tree with only two leaves:
| In[8]:= |
| Out[8]= |
The resource function PruferCodeToLabeledTree can be used to reconstruct the tree from its Prüfer code:
| In[9]:= |
| Out[9]= |
| In[10]:= |
| Out[10]= | ![]() |
The Prüfer code of a path is a sequence of n-2 distinct integers:
| In[11]:= |
| In[12]:= |
| Out[12]= |
| In[13]:= |
| Out[13]= |
The Prüfer code for an n-pointed star with the center vertex k is a sequence of n-1 copies of k:
| In[14]:= |
| Out[14]= | ![]() |
| In[15]:= |
| Out[15]= |
LabeledTreeToPruferCode does not work on non-explicit trees:
| In[16]:= |
| Out[16]= |
Substitute numbers for symbolic values to find the Prüfer code:
| In[17]:= |
| Out[17]= | ![]() |
| In[18]:= |
| Out[18]= |
LabeledTreeToPruferCode accepts only trees with vertices numbered sequentially, starting from 1:
| In[19]:= |
| Out[19]= |
| In[20]:= |
| Out[20]= |
Normalize labeling:
| In[21]:= |
| Out[21]= |
| In[22]:= |
| Out[22]= |
This work is licensed under a Creative Commons Attribution 4.0 International License