Wolfram Function Repository
Instant-use add-on functions for the Wolfram Language
Function Repository Resource:
Find the Prüfer code associated with a labeled tree
ResourceFunction["LabeledTreeToPruferCode"][g] gives the Prüfer code associated with the labeled tree g. |
The Prüfer code of a labeled tree:
In[1]:= |
Out[1]= |
Use FromDigits to obtain an integer-valued Prüfer code:
In[2]:= |
Out[2]= |
In[3]:= |
Out[3]= |
In[4]:= |
Out[4]= |
For a tree with n vertices, the length of the Prüfer code is n-2:
In[5]:= |
Out[5]= |
In[6]:= |
Out[6]= |
In[7]:= |
Out[7]= |
Empty Prüfer code corresponds to a tree with only two leaves:
In[8]:= |
Out[8]= |
The resource function PruferCodeToLabeledTree can be used to reconstruct the tree from its Prüfer code:
In[9]:= |
Out[9]= |
In[10]:= |
Out[10]= |
The Prüfer code of a path is a sequence of n-2 distinct integers:
In[11]:= |
In[12]:= |
Out[12]= |
In[13]:= |
Out[13]= |
The Prüfer code for an n-pointed star with the center vertex k is a sequence of n-1 copies of k:
In[14]:= |
Out[14]= |
In[15]:= |
Out[15]= |
LabeledTreeToPruferCode does not work on non-explicit trees:
In[16]:= |
Out[16]= |
Substitute numbers for symbolic values to find the Prüfer code:
In[17]:= |
Out[17]= |
In[18]:= |
Out[18]= |
LabeledTreeToPruferCode accepts only trees with vertices numbered sequentially, starting from 1:
In[19]:= |
Out[19]= |
In[20]:= |
Out[20]= |
Normalize labeling:
In[21]:= |
Out[21]= |
In[22]:= |
Out[22]= |
This work is licensed under a Creative Commons Attribution 4.0 International License