Wolfram Function Repository
Instant-use add-on functions for the Wolfram Language
Function Repository Resource:
Construct a labeled tree given its Prüfer code
ResourceFunction["PruferCodeToLabeledTree"][{i1,…,in-2}] gives the labeled tree on n vertices associated with the Prüfer code {i1,…,in-2}. |
The labeled tree associated with a Prüfer code:
In[1]:= |
Out[1]= |
Do not show labels:
In[2]:= |
Out[2]= |
Generate a random tree on n vertices:
In[3]:= |
In[4]:= |
Out[4]= |
Count distinct unlabeled trees on n vertices:
In[5]:= |
In[6]:= |
Out[6]= |
In[7]:= |
Out[7]= |
The tree associated with a Prüfer code of length n has n+2 vertices:
In[8]:= |
Out[8]= |
There are nn-2 tuples of length n−2 on the labels 1 to n and, correspondingly, the same number of different labeled trees:
In[9]:= |
In[10]:= |
Out[10]= |
In[11]:= |
Out[11]= |
In[12]:= |
Out[12]= |
Empty Prüfer code corresponds to a tree with only two leaves:
In[13]:= |
Out[13]= |
The resource function LabeledTreeToPruferCode can be used to get the Prüfer code of a labeled tree:
In[14]:= |
Out[14]= |
In[15]:= |
Out[15]= |
PruferCodeToLabeledTree reconstructs the tree:
In[16]:= |
Out[16]= |
Composition of the resource function LabeledTreeToPruferCode and PruferCodeToLabeledTree is an identity operation for any valid value of Prüfer's code:
In[17]:= |
In[18]:= |
Out[18]= |
In[19]:= |
Out[19]= |
In[20]:= |
Out[20]= |
The Prüfer code of a path is a sequence of n-2 distinct integers:
In[21]:= |
In[22]:= |
Out[22]= |
A sequence of n-1 copies of k is the Prüfer code for an n-pointed star with the center vertex k:
In[23]:= |
Out[23]= |
Integer inputs are also accepted:
In[24]:= |
Out[24]= |
The result is equivalent to using the digits of the integer:
In[25]:= |
Out[25]= |
This work is licensed under a Creative Commons Attribution 4.0 International License