Wolfram Function Repository
Instant-use add-on functions for the Wolfram Language
Function Repository Resource:
Compute the radical inverse of an integer to a given base
ResourceFunction["RadicalInverse"][n] gives the base 10 radical inverse of the integer n. | |
ResourceFunction["RadicalInverse"][b,n] gives the base-b radical inverse of the integer n. |
The base-10 radical inverse of 42:
| In[1]:= |
| Out[1]= |
The base-2 radical inverse of 42:
| In[2]:= |
| Out[2]= |
Plot the binary radical inverse:
| In[3]:= |
| Out[3]= | ![]() |
Evaluate for large arguments:
| In[4]:= |
| Out[4]= |
RadicalInverse automatically threads over lists:
| In[5]:= |
| Out[5]= |
Demonstrate the filling of the unit interval with the decimal radical inverse, also known as the van der Corput sequence:
| In[6]:= |
| Out[6]= |
Generate a 2D Halton sequence with bases 2 and 3:
| In[7]:= | ![]() |
| Out[7]= | ![]() |
Generate a 2D binary Hammersley sequence:
| In[8]:= | ![]() |
| Out[8]= | ![]() |
Compare the Halton and Hammersley sequences for approximating π by quasi-Monte Carlo integration:
| In[9]:= |
| Out[9]= |
| In[10]:= |
| Out[10]= |
This work is licensed under a Creative Commons Attribution 4.0 International License