Wolfram Function Repository
Instant-use add-on functions for the Wolfram Language
Function Repository Resource:
Get the irreducible group representation of SU(2) for a given angular momentum
ResourceFunction["WignerMatrix"][j,a] computes the Wigner matrix corresponding to the matrix a representing the irreducible Lie group representation corresponding to angular momentum j. |
For j=1/2, WignerMatrix yields the fundamental representation (i.e. the identity function):
In[1]:= | ![]() |
Out[1]= | ![]() |
The matrix entries are homogeneous polynomial functions of the elements of the argument matrix :
In[2]:= | ![]() |
Out[2]= | ![]() |
Obtain the images of the infinitesimal generators using PauliMatrix:
In[3]:= | ![]() |
Out[3]= | ![]() |
In[4]:= | ![]() |
Out[4]= | ![]() |
In[5]:= | ![]() |
Out[5]= | ![]() |
Verify an identity:
In[6]:= | ![]() |
Out[6]= | ![]() |
For j=1 and argument matrices expressed in terms of Euler angles, the result of WignerMatrix is related to EulerMatrix through a similarity transformation:
In[7]:= | ![]() |
Out[7]= | ![]() |
For general angular momentum j, the entries of WignerMatrix are given by WignerD functions:
In[8]:= | ![]() |
Out[8]= | ![]() |
Check the multiplicative property of WignerMatrix:
In[9]:= | ![]() |
Out[9]= | ![]() |
The determinant of WignerMatrix with angular momentum j is the j(2j+1)th power of the determinant of the argument matrix:
In[10]:= | ![]() |
Out[10]= | ![]() |
The character of the representation, i.e. the trace of WignerMatrix, is given by Tr[WignerMatrix[j,x]]=Det[x]jChebyshevU[2j,Tr[x]/(2Sqrt[Det[x]])]:
In[11]:= | ![]() |
Out[11]= | ![]() |
As a matrix with homogeneous polynomial entries, WignerMatrix must satisfy Euler's homogeneity relation:
In[12]:= | ![]() |
Out[12]= | ![]() |
This work is licensed under a Creative Commons Attribution 4.0 International License