Wolfram Function Repository
Instant-use add-on functions for the Wolfram Language
Function Repository Resource:
Get the irreducible group representation of SU(2) for a given angular momentum
ResourceFunction["WignerMatrix"][j,a] computes the Wigner matrix corresponding to the matrix a representing the irreducible Lie group representation corresponding to angular momentum j. |
For j=1/2, WignerMatrix yields the fundamental representation (i.e. the identity function):
In[1]:= |
Out[1]= |
The matrix entries are homogeneous polynomial functions of the elements of the argument matrix :
In[2]:= |
Out[2]= |
Obtain the images of the infinitesimal generators using PauliMatrix:
In[3]:= |
Out[3]= |
In[4]:= |
Out[4]= |
In[5]:= |
Out[5]= |
Verify an identity:
In[6]:= |
Out[6]= |
For j=1 and argument matrices expressed in terms of Euler angles, the result of WignerMatrix is related to EulerMatrix through a similarity transformation:
In[7]:= |
Out[7]= |
For general angular momentum j, the entries of WignerMatrix are given by WignerD functions:
In[8]:= |
Out[8]= |
Check the multiplicative property of WignerMatrix:
In[9]:= |
Out[9]= |
The determinant of WignerMatrix with angular momentum j is the j(2j+1)th power of the determinant of the argument matrix:
In[10]:= |
Out[10]= |
The character of the representation, i.e. the trace of WignerMatrix, is given by Tr[WignerMatrix[j,x]]=Det[x]jChebyshevU[2j,Tr[x]/(2Sqrt[Det[x]])]:
In[11]:= |
Out[11]= |
As a matrix with homogeneous polynomial entries, WignerMatrix must satisfy Euler's homogeneity relation:
In[12]:= |
Out[12]= |
This work is licensed under a Creative Commons Attribution 4.0 International License