Wolfram Language
Paclet Repository
Community-contributed installable additions to the Wolfram Language
Primary Navigation
Categories
Cloud & Deployment
Core Language & Structure
Data Manipulation & Analysis
Engineering Data & Computation
External Interfaces & Connections
Financial Data & Computation
Geographic Data & Computation
Geometry
Graphs & Networks
Higher Mathematical Computation
Images
Knowledge Representation & Natural Language
Machine Learning
Notebook Documents & Presentation
Scientific and Medical Data & Computation
Social, Cultural & Linguistic Data
Strings & Text
Symbolic & Numeric Computation
System Operation & Setup
Time-Related Computation
User Interface Construction
Visualization & Graphics
Random Paclet
Alphabetical List
Using Paclets
Create a Paclet
Get Started
Download Definition Notebook
Learn More about
Wolfram Language
RobustBackSteppingCancellation
Guides
Guide to ZigangPan`RobustBackSteppingCancellation`
Symbols
linearFactorConvex
RobustBackSteppingArztanG
RobustBackSteppingArztan
RobustBackSteppingCancellationG
RobustBackSteppingCancellation
ZigangPan`RobustBackSteppingCancellation`
l
i
n
e
a
r
F
a
c
t
o
r
C
o
n
v
e
x
{
f
0
,
f
t
i
l
d
e
}
=
l
i
n
e
a
r
F
a
c
t
o
r
C
o
n
v
e
x
[
f
,
x
c
,
y
c
]
r
e
t
u
r
n
s
a
f
o
r
m
u
l
a
f
0
a
n
d
a
f
o
r
m
u
l
a
f
t
i
l
d
e
f
o
r
a
t
e
n
s
o
r
f
u
n
c
t
i
o
n
f
t
i
l
d
e
[
x
c
,
y
c
]
s
u
c
h
t
h
a
t
f
=
f
0
+
f
t
i
l
d
e
.
y
c
I
t
a
s
s
u
m
e
s
t
h
a
t
f
h
a
s
a
d
o
m
a
i
n
o
f
d
e
f
i
n
i
t
i
o
n
t
h
a
t
i
s
c
o
n
v
e
x
i
n
y
c
.
f
:
a
f
o
r
m
u
l
a
f
o
r
s
c
a
l
a
r
,
v
e
c
t
o
r
,
m
a
t
r
i
x
o
r
t
e
n
s
o
r
v
a
l
u
e
d
f
u
n
c
t
i
o
n
w
i
t
h
i
n
d
e
p
e
n
d
e
n
t
v
a
r
i
a
b
l
e
s
J
o
i
n
[
x
c
,
y
c
]
;
x
c
:
a
v
e
c
t
o
r
o
f
v
a
r
i
a
b
l
e
s
(
m
a
y
b
e
e
m
p
t
y
)
y
c
:
a
v
e
c
t
o
r
o
f
v
a
r
i
a
b
l
e
s
(
m
u
s
t
b
e
n
o
n
e
m
p
t
y
)
Examples
(
1
)
Basic Examples
(
1
)
I
n
[
1
]
:
=
f
=
{
x
1
+
x
2
+
y
1
+
x
1
^
2
,
x
1
-
x
2
+
y
2
+
y
1
^
2
+
x
1
y
1
+
x
1
*
x
2
*
y
1
^
2
}
;
x
c
=
{
x
1
,
x
2
}
;
y
c
=
{
y
1
,
y
2
}
;
l
i
n
e
a
r
F
a
c
t
o
r
C
o
n
v
e
x
[
f
,
x
c
,
y
c
]
O
u
t
[
1
]
=
{
x
1
+
2
x
1
+
x
2
,
x
1
-
x
2
}
,
{
1
,
0
}
,
x
1
+
1
2
(
2
y
1
+
2
x
1
x
2
y
1
)
,
1
I
n
[
2
]
:
=
f
=
{
x
1
+
x
2
+
y
1
+
x
1
^
2
,
x
1
-
x
2
+
y
2
+
y
1
^
2
+
x
1
y
1
+
x
1
*
x
2
*
y
1
^
2
}
;
x
c
=
{
x
1
,
x
2
}
;
y
c
=
{
y
1
,
y
2
}
;
l
i
n
e
a
r
F
a
c
t
o
r
S
e
q
u
e
n
t
i
a
l
[
f
,
x
c
,
y
c
]
O
u
t
[
2
]
=
{
{
x
1
+
2
x
1
+
x
2
,
x
1
-
x
2
}
,
{
{
1
,
0
}
,
{
x
1
+
y
1
+
x
1
x
2
y
1
,
1
}
}
}
I
n
[
3
]
:
=
f
=
{
x
1
+
x
2
+
x
1
*
y
2
+
y
1
^
2
*
x
2
,
x
1
-
x
2
+
y
1
y
2
+
x
1
*
x
2
*
(
y
2
+
y
2
^
2
)
}
;
x
c
=
{
x
1
,
x
2
}
;
y
c
=
{
y
1
,
y
2
}
;
l
i
n
e
a
r
F
a
c
t
o
r
C
o
n
v
e
x
[
f
,
x
c
,
y
c
]
O
u
t
[
3
]
=
{
x
1
+
x
2
,
x
1
-
x
2
}
,
{
x
2
y
1
,
x
1
}
,
y
2
2
,
x
1
x
2
+
y
1
2
+
x
1
x
2
y
2
I
n
[
4
]
:
=
f
=
{
x
1
+
x
2
+
x
1
*
y
2
+
y
1
^
2
*
x
2
,
x
1
-
x
2
+
y
1
y
2
+
x
1
*
x
2
*
(
y
2
+
y
2
^
2
)
}
;
x
c
=
{
x
1
,
x
2
}
;
y
c
=
{
y
1
,
y
2
}
;
l
i
n
e
a
r
F
a
c
t
o
r
S
e
q
u
e
n
t
i
a
l
[
f
,
x
c
,
y
c
]
O
u
t
[
4
]
=
{
{
x
1
+
x
2
,
x
1
-
x
2
}
,
{
{
x
2
y
1
,
x
1
}
,
{
0
,
y
1
+
x
1
x
2
(
1
+
y
2
)
}
}
}
S
e
e
A
l
s
o
l
i
n
e
a
r
F
a
c
t
o
r
S
e
q
u
e
n
t
i
a
l
R
e
l
a
t
e
d
G
u
i
d
e
s
▪
G
u
i
d
e
t
o
Z
i
g
a
n
g
P
a
n
`
R
o
b
u
s
t
B
a
c
k
S
t
e
p
p
i
n
g
C
a
n
c
e
l
l
a
t
i
o
n
`
"
"