Wolfram Language Paclet Repository

Community-contributed installable additions to the Wolfram Language

Primary Navigation

    • Cloud & Deployment
    • Core Language & Structure
    • Data Manipulation & Analysis
    • Engineering Data & Computation
    • External Interfaces & Connections
    • Financial Data & Computation
    • Geographic Data & Computation
    • Geometry
    • Graphs & Networks
    • Higher Mathematical Computation
    • Images
    • Knowledge Representation & Natural Language
    • Machine Learning
    • Notebook Documents & Presentation
    • Scientific and Medical Data & Computation
    • Social, Cultural & Linguistic Data
    • Strings & Text
    • Symbolic & Numeric Computation
    • System Operation & Setup
    • Time-Related Computation
    • User Interface Construction
    • Visualization & Graphics
    • Random Paclet
    • Alphabetical List
  • Using Paclets
    • Get Started
    • Download Definition Notebook
  • Learn More about Wolfram Language

RobustBackSteppingCancellation

Guides

  • Guide to ZigangPan`RobustBackSteppingCancellation`

Symbols

  • linearFactorConvex
  • RobustBackSteppingArztanG
  • RobustBackSteppingArztan
  • RobustBackSteppingCancellationG
  • RobustBackSteppingCancellation
ZigangPan`RobustBackSteppingCancellation`
linearFactorConvex
​
{f0,ftilde}=linearFactorConvex[f,xc,yc]
returns a formula
f0
and a formula
ftilde
for a tensor function
ftilde[xc,yc]
such that
f
=f0+ftilde.yc
It assumes that
f
has a domain of definition that is convex in
yc
.
f
: a formula for scalar, vector, matrix or tensor valued function with independent variables
Join
[xc,yc]
;
xc
: a vector of variables (maybe empty)
yc
: a vector of variables (must be nonempty)
​
Examples  
(1)
Basic Examples  
(1)
In[1]:=
f={x1+x2+y1+x1^2,x1-x2+y2+y1^2+x1y1+x1*x2*y1^2};xc={x1,x2};yc={y1,y2};​​
linearFactorConvex
[f,xc,yc]
Out[1]=
{x1+
2
x1
+x2,x1-x2},{1,0},x1+
1
2
(2y1+2x1x2y1),1
In[2]:=
f={x1+x2+y1+x1^2,x1-x2+y2+y1^2+x1y1+x1*x2*y1^2};xc={x1,x2};yc={y1,y2};​​linearFactorSequential[f,xc,yc]
Out[2]=
{{x1+
2
x1
+x2,x1-x2},{{1,0},{x1+y1+x1x2y1,1}}}
In[3]:=
f={x1+x2+x1*y2+y1^2*x2,x1-x2+y1y2+x1*x2*(y2+y2^2)};xc={x1,x2};yc={y1,y2};​​
linearFactorConvex
[f,xc,yc]
Out[3]=
{x1+x2,x1-x2},{x2y1,x1},
y2
2
,x1x2+
y1
2
+x1x2y2
In[4]:=
f={x1+x2+x1*y2+y1^2*x2,x1-x2+y1y2+x1*x2*(y2+y2^2)};xc={x1,x2};yc={y1,y2};​​linearFactorSequential[f,xc,yc]
Out[4]=
{{x1+x2,x1-x2},{{x2y1,x1},{0,y1+x1x2(1+y2)}}}
SeeAlso
linearFactorSequential
RelatedGuides
▪
Guide to ZigangPan`RobustBackSteppingCancellation`
""

© 2025 Wolfram. All rights reserved.

  • Legal & Privacy Policy
  • Contact Us
  • WolframAlpha.com
  • WolframCloud.com