Wolfram Language
Paclet Repository
Community-contributed installable additions to the Wolfram Language
Primary Navigation
Categories
Cloud & Deployment
Core Language & Structure
Data Manipulation & Analysis
Engineering Data & Computation
External Interfaces & Connections
Financial Data & Computation
Geographic Data & Computation
Geometry
Graphs & Networks
Higher Mathematical Computation
Images
Knowledge Representation & Natural Language
Machine Learning
Notebook Documents & Presentation
Scientific and Medical Data & Computation
Social, Cultural & Linguistic Data
Strings & Text
Symbolic & Numeric Computation
System Operation & Setup
Time-Related Computation
User Interface Construction
Visualization & Graphics
Random Paclet
Alphabetical List
Using Paclets
Create a Paclet
Get Started
Download Definition Notebook
Learn More about
Wolfram Language
DifferentialGeometricNonlinearControl
Guides
Guide to ZigangPan`DifferentialGeometricNonlinearControl`
Symbols
LieBracket
LieBracketN
LieDerivativeCovector
LieDerivativeCovectorN
LieDerivative
LieDerivativeN
NaturalNumberQ
ZigangPan`DifferentialGeometricNonlinearControl`
L
i
e
D
e
r
i
v
a
t
i
v
e
L
i
e
D
e
r
i
v
a
t
i
v
e
[
f
x
,
λ
x
,
x
]
c
a
l
c
u
l
a
t
e
s
t
h
e
d
e
r
i
v
a
t
i
v
e
o
f
t
h
e
s
m
o
o
t
h
f
u
n
c
t
i
o
n
λ
x
=
λ
[
x
]
a
l
o
n
g
t
h
e
v
e
c
t
o
r
f
i
e
l
d
f
x
=
f
[
x
]
.
Examples
(
1
)
Basic Examples
(
1
)
I
n
[
1
]
:
=
f
x
=
{
x
1
,
x
3
,
x
2
-
x
1
}
;
λ
x
=
x
1
^
2
+
x
2
^
2
+
x
3
^
4
;
L
i
e
D
e
r
i
v
a
t
i
v
e
[
f
x
,
λ
x
,
{
x
1
,
x
2
,
x
3
}
]
O
u
t
[
1
]
=
2
2
x
1
+
2
x
2
x
3
+
4
(
-
x
1
+
x
2
)
3
x
3
S
e
e
A
l
s
o
L
i
e
D
e
r
i
v
a
t
i
v
e
N
▪
L
i
e
B
r
a
c
k
e
t
▪
L
i
e
B
r
a
c
k
e
t
N
▪
L
i
e
D
e
r
i
v
a
t
i
v
e
C
o
v
e
c
t
o
r
▪
L
i
e
D
e
r
i
v
a
t
i
v
e
C
o
v
e
c
t
o
r
N
"
"