Wolfram Language
Paclet Repository
Community-contributed installable additions to the Wolfram Language
Primary Navigation
Categories
Cloud & Deployment
Core Language & Structure
Data Manipulation & Analysis
Engineering Data & Computation
External Interfaces & Connections
Financial Data & Computation
Geographic Data & Computation
Geometry
Graphs & Networks
Higher Mathematical Computation
Images
Knowledge Representation & Natural Language
Machine Learning
Notebook Documents & Presentation
Scientific and Medical Data & Computation
Social, Cultural & Linguistic Data
Strings & Text
Symbolic & Numeric Computation
System Operation & Setup
Time-Related Computation
User Interface Construction
Visualization & Graphics
Random Paclet
Alphabetical List
Using Paclets
Create a Paclet
Get Started
Download Definition Notebook
Learn More about
Wolfram Language
DifferentialEquationSolver
Guides
Guide to ZigangPan`DifferentialEquationSolver`
Symbols
flow
flowV
HDRungeKutta
nflow
nflowV
RungeKutta45
RungeKutta45V
ZigangPan`DifferentialEquationSolver`
n
f
l
o
w
V
n
f
l
o
w
V
[
f
,
x
c
,
t
0
,
x
c
0
,
t
i
,
t
f
]
c
a
l
c
u
l
a
t
e
s
t
h
e
n
u
m
e
r
i
c
a
l
s
o
l
u
t
i
o
n
t
o
t
h
e
s
y
s
t
e
m
o
f
o
r
d
i
n
a
r
y
d
i
f
f
e
r
e
n
t
i
a
l
e
q
u
a
t
i
o
n
x
c
'
[
t
]
=
f
[
x
c
[
t
]
]
;
x
c
[
t
0
]
=
x
c
0
;
w
h
e
r
e
f
i
s
t
h
e
v
e
c
t
o
r
f
i
e
l
d
(
a
p
u
r
e
f
u
n
c
t
i
o
n
)
,
x
c
i
s
t
h
e
s
t
a
t
e
v
e
c
t
o
r
,
x
c
0
i
s
t
h
e
i
n
i
t
i
a
l
c
o
n
d
i
t
i
o
n
a
t
t
i
m
e
t
0
,
a
n
d
[
t
i
,
t
f
]
i
s
t
h
e
t
i
m
e
i
n
t
e
r
v
a
l
o
n
w
h
i
c
h
s
o
l
u
t
i
o
n
i
s
s
o
u
g
h
t
.
T
h
e
r
e
t
u
r
n
o
f
t
h
e
f
u
n
c
t
i
o
n
i
s
a
f
u
n
c
t
i
o
n
s
o
l
[
t
_
]
o
n
t
h
e
i
n
t
e
r
v
a
l
[
t
i
,
t
f
]
t
h
a
t
s
a
t
i
s
f
i
e
s
t
h
e
d
e
s
i
r
e
d
d
i
f
f
e
r
e
n
t
i
a
l
e
q
u
a
t
i
o
n
a
n
d
t
h
e
i
n
i
t
i
a
l
c
o
n
d
i
t
i
o
n
u
p
t
o
n
u
m
e
r
i
c
a
l
p
r
e
c
i
s
i
o
n
.
N
o
t
e
t
h
a
t
f
i
s
a
f
u
n
c
t
i
o
n
o
f
x
c
b
u
t
n
o
t
i
t
s
i
n
d
i
v
u
a
l
e
l
e
m
e
n
t
s
x
c
=
(
x
c
1
,
x
c
2
,
.
.
.
,
x
c
n
)
D
e
t
a
i
l
s
a
n
d
O
p
t
i
o
n
s
Examples
(
1
)
Basic Examples
(
1
)
I
n
[
1
]
:
=
f
[
x
_
]
:
=
{
-
x
〚
1
〛
,
x
〚
1
〛
^
2
-
x
〚
2
〛
}
;
x
c
=
{
x
1
,
x
2
}
;
t
0
=
0
;
x
c
0
=
{
2
,
1
}
;
t
i
=
t
0
;
t
f
=
1
0
;
I
n
[
2
]
:
=
s
o
l
=
n
f
l
o
w
V
[
f
,
x
c
,
t
0
,
x
c
0
,
t
i
,
t
f
]
;
I
n
[
3
]
:
=
P
l
o
t
[
s
o
l
[
t
]
,
{
t
,
t
i
,
t
f
}
,
P
l
o
t
R
a
n
g
e
A
l
l
]
O
u
t
[
3
]
=
S
e
e
A
l
s
o
f
l
o
w
V
▪
n
f
l
o
w
▪
f
l
o
w
▪
R
u
n
g
e
K
u
t
t
a
4
5
V
▪
R
u
n
g
e
K
u
t
t
a
4
5
"
"