Wolfram Language
Paclet Repository
Community-contributed installable additions to the Wolfram Language
Primary Navigation
Categories
Cloud & Deployment
Core Language & Structure
Data Manipulation & Analysis
Engineering Data & Computation
External Interfaces & Connections
Financial Data & Computation
Geographic Data & Computation
Geometry
Graphs & Networks
Higher Mathematical Computation
Images
Knowledge Representation & Natural Language
Machine Learning
Notebook Documents & Presentation
Scientific and Medical Data & Computation
Social, Cultural & Linguistic Data
Strings & Text
Symbolic & Numeric Computation
System Operation & Setup
Time-Related Computation
User Interface Construction
Visualization & Graphics
Random Paclet
Alphabetical List
Using Paclets
Create a Paclet
Get Started
Download Definition Notebook
Learn More about
Wolfram Language
DifferentialEquationSolver
Guides
Guide to ZigangPan`DifferentialEquationSolver`
Symbols
flow
flowV
HDRungeKutta
nflow
nflowV
RungeKutta45
RungeKutta45V
ZigangPan`DifferentialEquationSolver`
R
u
n
g
e
K
u
t
t
a
4
5
R
u
n
g
e
K
u
t
t
a
4
5
[
f
,
t
0
,
x
0
,
t
f
,
Δ
t
]
c
o
m
p
u
t
e
s
t
h
e
n
u
m
e
r
i
c
a
l
s
o
l
u
t
i
o
n
t
o
t
h
e
s
y
s
t
e
m
o
f
o
r
d
i
n
a
r
y
d
i
f
f
e
r
e
n
t
i
a
l
e
q
u
a
t
i
o
n
s
:
x
'
[
t
]
=
f
[
x
1
[
t
]
,
x
2
[
t
]
,
.
.
.
,
x
n
[
t
]
]
;
x
[
t
0
]
=
x
0
u
s
i
n
g
t
h
e
4
-
t
e
r
m
5
t
h
-
o
r
d
e
r
p
r
e
c
i
s
i
o
n
R
u
n
g
e
K
u
t
t
a
m
e
t
h
o
d
w
i
t
h
i
n
t
e
g
r
a
t
i
o
n
s
t
e
p
s
i
z
e
Δ
t
.
T
h
e
s
o
l
u
t
i
o
n
i
s
a
p
u
r
e
f
u
n
c
t
i
o
n
x
[
t
_
]
.
Examples
(
1
)
Basic Examples
(
1
)
I
n
[
1
]
:
=
f
[
x
1
_
,
x
2
_
]
:
=
{
-
x
1
,
x
1
^
2
-
x
2
}
;
t
0
=
0
;
x
c
0
=
{
2
,
1
}
;
t
f
=
1
0
;
Δ
t
=
0
.
0
1
;
I
n
[
2
]
:
=
s
o
l
=
R
u
n
g
e
K
u
t
t
a
4
5
[
f
,
t
0
,
x
c
0
,
t
f
,
Δ
t
]
;
1
0
%
c
o
m
p
l
e
t
e
d
.
2
0
%
c
o
m
p
l
e
t
e
d
.
3
0
%
c
o
m
p
l
e
t
e
d
.
4
0
%
c
o
m
p
l
e
t
e
d
.
5
0
%
c
o
m
p
l
e
t
e
d
.
6
0
%
c
o
m
p
l
e
t
e
d
.
7
0
%
c
o
m
p
l
e
t
e
d
.
8
0
%
c
o
m
p
l
e
t
e
d
.
9
0
%
c
o
m
p
l
e
t
e
d
.
1
0
0
%
c
o
m
p
l
e
t
e
d
.
I
n
[
3
]
:
=
P
l
o
t
[
s
o
l
[
t
]
,
{
t
,
t
0
,
t
f
}
,
P
l
o
t
R
a
n
g
e
A
l
l
]
O
u
t
[
3
]
=
S
e
e
A
l
s
o
n
f
l
o
w
▪
f
l
o
w
▪
R
u
n
g
e
K
u
t
t
a
4
5
V
▪
f
l
o
w
V
▪
n
f
l
o
w
V
▪
H
D
R
u
n
g
e
K
u
t
t
a
"
"