Wolfram Language Paclet Repository

Community-contributed installable additions to the Wolfram Language

Primary Navigation

    • Cloud & Deployment
    • Core Language & Structure
    • Data Manipulation & Analysis
    • Engineering Data & Computation
    • External Interfaces & Connections
    • Financial Data & Computation
    • Geographic Data & Computation
    • Geometry
    • Graphs & Networks
    • Higher Mathematical Computation
    • Images
    • Knowledge Representation & Natural Language
    • Machine Learning
    • Notebook Documents & Presentation
    • Scientific and Medical Data & Computation
    • Social, Cultural & Linguistic Data
    • Strings & Text
    • Symbolic & Numeric Computation
    • System Operation & Setup
    • Time-Related Computation
    • User Interface Construction
    • Visualization & Graphics
    • Random Paclet
    • Alphabetical List
  • Using Paclets
    • Get Started
    • Download Definition Notebook
  • Learn More about Wolfram Language

DifferentialEquationSolver

Guides

  • Guide to ZigangPan`DifferentialEquationSolver`

Symbols

  • flow
  • flowV
  • HDRungeKutta
  • nflow
  • nflowV
  • RungeKutta45
  • RungeKutta45V
ZigangPan`DifferentialEquationSolver`
nflow
​
nflow
[f,xc,
t
0
,
xc
0
,ti,tf]
calculates the numerical solution to the system of ordinary differential equation
xc'[t]=f[xc1[t],xc2[t],...,xcn[t]]
;
xc[t0]=xc0
; where
f
is the vector field (a pure function),
xc
is the state vector,
xc0
is the initial condition at time
t0
, and
[ti,tf]
is the time interval on which solution is sought. The return of the function is a function sol[t_] on the interval
[ti,tf]
that satisfies the desired differential equation and the initial condition up to numerical precision.
​
Details and Options

Examples  
(1)
Basic Examples  
(1)
In[1]:=
f[x1_,x2_]:={-x1,x1^2-x2};xc={x1,x2};t0=0;xc0={2,1};ti=t0;tf=10;
In[2]:=
sol=
nflow
[f,xc,t0,xc0,ti,tf];
In[3]:=
Plot[sol[t],{t,ti,tf},PlotRangeAll]
Out[3]=
SeeAlso
flow
 
▪
flowV
 
▪
nflowV
 
▪
RungeKutta45
 
▪
RungeKutta45V
""

© 2025 Wolfram. All rights reserved.

  • Legal & Privacy Policy
  • Contact Us
  • WolframAlpha.com
  • WolframCloud.com