Wolfram Language
Paclet Repository
Community-contributed installable additions to the Wolfram Language
Primary Navigation
Categories
Cloud & Deployment
Core Language & Structure
Data Manipulation & Analysis
Engineering Data & Computation
External Interfaces & Connections
Financial Data & Computation
Geographic Data & Computation
Geometry
Graphs & Networks
Higher Mathematical Computation
Images
Knowledge Representation & Natural Language
Machine Learning
Notebook Documents & Presentation
Scientific and Medical Data & Computation
Social, Cultural & Linguistic Data
Strings & Text
Symbolic & Numeric Computation
System Operation & Setup
Time-Related Computation
User Interface Construction
Visualization & Graphics
Random Paclet
Alphabetical List
Using Paclets
Create a Paclet
Get Started
Download Definition Notebook
Learn More about
Wolfram Language
MoleculeFingerprints
Guides
Molecule Fingerprints
Tech Notes
Substructure Screening
Symbols
AtomPairFingerprint
ExtendedConnectivityFingerprint
LayeredFingerprint
MACCSKeysFingerprint
MoleculeDistanceMatrix
MoleculeDistance
MoleculeNearest
PatternFingerprint
SubstructureKeyFingerprint
TopologicalFingerprint
$DefaultFingerprintFormat
$DefaultFingerprintType
WolframChemistry`MoleculeFingerprints`
A
t
o
m
P
a
i
r
F
i
n
g
e
r
p
r
i
n
t
A
t
o
m
P
a
i
r
F
i
n
g
e
r
p
r
i
n
t
[
m
o
l
,
"
f
o
r
m
a
t
"
]
r
e
t
u
r
n
s
a
n
a
t
o
m
-
p
a
i
r
f
i
n
g
e
r
p
r
i
n
t
f
o
r
t
h
e
g
i
v
e
n
m
o
l
e
c
u
l
e
w
i
t
h
t
h
e
g
i
v
e
n
o
u
t
p
u
t
f
o
r
m
a
t
.
A
t
o
m
P
a
i
r
F
i
n
g
e
r
p
r
i
n
t
[
"
f
o
r
m
a
t
"
]
r
e
t
u
r
n
s
a
f
u
n
c
t
i
o
n
t
h
a
t
c
a
n
b
e
a
p
p
l
i
e
d
t
o
m
o
l
e
c
u
l
e
s
.
D
e
t
a
i
l
s
a
n
d
O
p
t
i
o
n
s
Examples
(
1
3
)
Basic Examples
(
1
)
Find the atom
-
pair fingerprint for a molecule:
I
n
[
1
]
:
=
A
t
o
m
P
a
i
r
F
i
n
g
e
r
p
r
i
n
t
M
o
l
e
c
u
l
e
F
o
r
m
u
l
a
:
C
1
9
H
2
3
N
5
O
A
t
o
m
s
:
4
8
B
o
n
d
s
:
5
1
O
u
t
[
1
]
=
N
u
m
e
r
i
c
A
r
r
a
y
T
y
p
e
:
I
n
t
e
g
e
r
8
D
i
m
e
n
s
i
o
n
s
:
{
2
0
4
8
}
Find the number of nonzero elements in the fingerprint:
I
n
[
2
]
:
=
T
o
t
a
l
[
%
]
O
u
t
[
2
]
=
1
4
4
List the nonzero elements:
I
n
[
3
]
:
=
P
o
s
i
t
i
o
n
I
n
d
e
x
[
N
o
r
m
a
l
[
%
%
]
]
[
1
]
O
u
t
[
3
]
=
{
1
2
,
1
9
,
3
6
,
4
4
,
5
4
,
6
1
,
6
2
,
8
6
,
9
3
,
9
9
,
1
0
2
,
1
0
7
,
1
2
5
,
1
2
6
,
1
3
8
,
1
4
0
,
1
4
9
,
1
5
8
,
1
6
2
,
1
6
7
,
1
7
7
,
1
9
1
,
1
9
2
,
2
0
1
,
2
0
3
,
2
1
2
,
2
2
3
,
2
3
2
,
2
5
5
,
2
5
6
,
2
7
1
,
2
9
5
,
3
0
4
,
3
1
2
,
3
1
3
,
3
3
7
,
3
4
4
,
3
7
5
,
3
7
8
,
4
0
1
,
4
0
6
,
4
0
7
,
4
2
7
,
4
9
9
,
5
3
1
,
5
3
8
,
5
6
4
,
5
7
0
,
6
5
3
,
7
0
5
,
7
5
7
,
7
6
0
,
7
7
6
,
7
9
1
,
8
0
0
,
8
1
9
,
8
3
8
,
8
5
7
,
8
5
9
,
8
6
9
,
8
8
1
,
8
8
4
,
9
0
2
,
9
0
3
,
9
2
2
,
9
2
4
,
9
4
1
,
9
4
3
,
9
8
5
,
9
8
7
,
9
9
9
,
1
0
0
6
,
1
0
0
8
,
1
0
1
0
,
1
0
1
1
,
1
0
2
5
,
1
0
2
6
,
1
0
3
3
,
1
0
4
9
,
1
0
5
1
,
1
0
6
0
,
1
0
8
3
,
1
0
8
9
,
1
0
9
7
,
1
0
9
8
,
1
1
2
1
,
1
1
3
0
,
1
1
3
2
,
1
1
5
5
,
1
1
8
6
,
1
1
9
3
,
1
1
9
5
,
1
2
0
7
,
1
2
2
3
,
1
2
4
0
,
1
2
6
9
,
1
2
8
5
,
1
2
8
6
,
1
2
9
3
,
1
2
9
6
,
1
3
1
7
,
1
3
2
6
,
1
3
2
8
,
1
3
3
5
,
1
3
5
0
,
1
3
5
1
,
1
3
5
8
,
1
3
5
9
,
1
3
8
9
,
1
3
9
1
,
1
3
9
5
,
1
4
1
1
,
1
4
1
2
,
1
4
5
4
,
1
4
5
7
,
1
4
7
5
,
1
4
7
6
,
1
4
9
8
,
1
5
0
0
,
1
5
0
7
,
1
5
2
2
,
1
5
9
4
,
1
6
1
2
,
1
6
5
7
,
1
6
7
0
,
1
6
7
1
,
1
6
7
8
,
1
6
7
9
,
1
7
3
3
,
1
7
3
6
,
1
7
4
1
,
1
7
4
4
,
1
7
7
3
,
1
7
7
5
,
1
8
0
2
,
1
8
0
7
,
1
8
4
5
,
1
8
4
8
,
1
8
6
5
,
1
8
7
2
,
1
8
7
8
,
1
8
9
8
,
1
9
1
0
,
1
9
6
1
}
S
c
o
p
e
(
3
)
O
p
t
i
o
n
s
(
7
)
A
p
p
l
i
c
a
t
i
o
n
s
(
1
)
N
e
a
t
E
x
a
m
p
l
e
s
(
1
)
S
e
e
A
l
s
o
M
o
l
e
c
u
l
e
▪
F
e
a
t
u
r
e
E
x
t
r
a
c
t
▪
T
o
p
o
l
o
g
i
c
a
l
F
i
n
g
e
r
p
r
i
n
t
▪
M
o
l
e
c
u
l
e
D
i
s
t
a
n
c
e
▪
A
t
o
m
P
a
i
r
F
i
n
g
e
r
p
r
i
n
t
T
e
c
h
N
o
t
e
s
▪
S
u
b
s
t
r
u
c
t
u
r
e
S
c
r
e
e
n
i
n
g
R
e
l
a
t
e
d
G
u
i
d
e
s
▪
M
o
l
e
c
u
l
e
F
i
n
g
e
r
p
r
i
n
t
s
R
e
l
a
t
e
d
L
i
n
k
s
▪
R
.
E
.
C
a
r
h
a
r
t
,
D
.
H
.
S
m
i
t
h
,
R
.
V
e
n
k
a
t
a
r
a
g
h
a
v
a
n
;
“
A
t
o
m
P
a
i
r
s
a
s
M
o
l
e
c
u
l
a
r
F
e
a
t
u
r
e
s
i
n
S
t
r
u
c
t
u
r
e
-
A
c
t
i
v
i
t
y
S
t
u
d
i
e
s
:
D
e
f
i
n
i
t
i
o
n
a
n
d
A
p
p
l
i
c
a
t
i
o
n
s
”
J
C
I
C
S
2
5
,
6
4
-
7
3
(
1
9
8
5
)
.
"
"