Wolfram Language
Paclet Repository
Community-contributed installable additions to the Wolfram Language
Primary Navigation
Categories
Cloud & Deployment
Core Language & Structure
Data Manipulation & Analysis
Engineering Data & Computation
External Interfaces & Connections
Financial Data & Computation
Geographic Data & Computation
Geometry
Graphs & Networks
Higher Mathematical Computation
Images
Knowledge Representation & Natural Language
Machine Learning
Notebook Documents & Presentation
Scientific and Medical Data & Computation
Social, Cultural & Linguistic Data
Strings & Text
Symbolic & Numeric Computation
System Operation & Setup
Time-Related Computation
User Interface Construction
Visualization & Graphics
Random Paclet
Alphabetical List
Using Paclets
Create a Paclet
Get Started
Download Definition Notebook
Learn More about
Wolfram Language
QuantumFramework
Tutorials
Getting Started
Guides
Wolfram Quantum Computation Framework
Tech Notes
Bell's Theorem
Circuit Diagram
Quantum Optimization
Exploring Fundamentals of Quantum Theory
Quantum object abstraction
Second Quantization Functions
Tensor Network
Quantum Computation
Symbols
QuantumBasis
QuantumChannel
QuantumCircuitMultiwayGraph [EXPERIMENTAL]
QuantumCircuitOperator
QuantumDistance
QuantumEntangledQ
QuantumEntanglementMonotone
QuantumEvolve
QuantumMeasurement
QuantumMeasurementOperator
QuantumMeasurementSimulation
QuantumMPS [EXPERIMENTAL]
QuantumOperator
QuantumPartialTrace
QuantumPhaseSpaceTransform
QuantumShortcut [EXPERIMENTAL]
QuantumStateEstimate [EXPERIMENTAL]
QuantumState
QuantumTensorProduct
QuantumWignerMICTransform [EXPERIMENTAL]
QuantumWignerTransform [EXPERIMENTAL]
QuditBasis
QuditName
Wolfram`QuantumFramework`
Q
u
a
n
t
u
m
W
i
g
n
e
r
T
r
a
n
s
f
o
r
m
[
E
X
P
E
R
I
M
E
N
T
A
L
]
Q
u
a
n
t
u
m
W
i
g
n
e
r
T
r
a
n
s
f
o
r
m
[
o
b
j
]
t
r
a
n
s
f
o
r
m
s
a
q
u
a
n
t
u
m
o
b
j
e
c
t
i
n
t
o
i
t
s
p
h
a
s
e
-
s
p
a
c
e
r
e
p
r
e
s
e
n
t
a
t
i
o
n
i
n
t
h
e
W
i
g
n
e
r
b
a
s
i
s
.
D
e
t
a
i
l
s
a
n
d
O
p
t
i
o
n
s
Examples
(
2
6
)
Basic Examples
(
5
)
Generate the Wigner transformation a quantum state in the phase space:
I
n
[
1
]
:
=
ρ
=
Q
u
a
n
t
u
m
S
t
a
t
e
[
"
R
a
n
d
o
m
M
i
x
e
d
"
,
3
]
;
Q
u
a
n
t
u
m
W
i
g
n
e
r
T
r
a
n
s
f
o
r
m
[
ρ
]
O
u
t
[
2
]
=
Q
u
a
n
t
u
m
S
t
a
t
e
P
u
r
e
s
t
a
t
e
Q
u
d
i
t
s
:
1
T
y
p
e
:
V
e
c
t
o
r
D
i
m
e
n
s
i
o
n
:
9
P
i
c
t
u
r
e
:
P
h
a
s
e
S
p
a
c
e
It is the same as the basis transformation of the doubled state into the corresponding Wigner basis:
Q
u
a
n
t
u
m
S
t
a
t
e
ρ
[
"
D
o
u
b
l
e
"
]
,
Q
u
a
n
t
u
m
B
a
s
i
s
[
"
W
i
g
n
e
r
"
[
ρ
[
"
D
i
m
e
n
s
i
o
n
"
]
]
]
%
T
r
u
e
For odd dimensions, PhaseSpace as a property of a quantum state has the dimension
d
×
d
:
I
n
[
1
]
:
=
ρ
=
Q
u
a
n
t
u
m
S
t
a
t
e
[
"
R
a
n
d
o
m
M
i
x
e
d
"
,
3
]
;
M
a
t
r
i
x
F
o
r
m
[
ρ
[
"
P
h
a
s
e
S
p
a
c
e
"
]
]
O
u
t
[
1
]
=
0
.
1
0
8
2
4
2
0
.
1
6
3
7
5
2
0
.
2
0
0
0
7
2
0
.
1
6
7
3
6
0
.
1
9
3
3
7
2
-
0
.
0
2
6
5
8
6
0
.
1
9
3
7
7
1
-
0
.
0
2
1
2
7
0
.
0
2
1
2
8
7
4
The state vector in the Wigner basis corresponds to PhaseSpace representation of the state:
I
n
[
2
]
:
=
Q
u
a
n
t
u
m
W
i
g
n
e
r
T
r
a
n
s
f
o
r
m
[
ρ
]
[
"
S
t
a
t
e
V
e
c
t
o
r
"
]
F
l
a
t
t
e
n
@
ρ
[
"
P
h
a
s
e
S
p
a
c
e
"
]
O
u
t
[
2
]
=
T
r
u
e
For even dimensions, PhaseSpace has the dimension
2
d
×
2
d
:
I
n
[
1
]
:
=
d
=
4
;
ρ
=
Q
u
a
n
t
u
m
S
t
a
t
e
[
"
R
a
n
d
o
m
M
i
x
e
d
"
,
d
]
;
ρ
[
"
P
h
a
s
e
S
p
a
c
e
"
]
O
u
t
[
1
]
=
S
p
a
r
s
e
A
r
r
a
y
S
p
e
c
i
f
i
e
d
e
l
e
m
e
n
t
s
:
6
4
D
i
m
e
n
s
i
o
n
s
:
{
8
,
8
}
This implies that the PhaseSpace of even dimensions has some extra dependent elements. It has been discussed in more details later.
If we partition the PhaseSpace into four blocks of the dimension
d
×
d
, the upper left one corresponds to the StateVector of the Wigner transformation:
I
n
[
2
]
:
=
Q
u
a
n
t
u
m
W
i
g
n
e
r
T
r
a
n
s
f
o
r
m
[
ρ
]
[
"
S
t
a
t
e
V
e
c
t
o
r
"
]
F
l
a
t
t
e
n
[
ρ
[
"
P
h
a
s
e
S
p
a
c
e
"
]
〚
;
;
d
,
;
;
d
〛
]
O
u
t
[
2
]
=
T
r
u
e
Winger transformation of an operator:
I
n
[
1
]
:
=
o
p
=
Q
u
a
n
t
u
m
W
i
g
n
e
r
T
r
a
n
s
f
o
r
m
Q
u
a
n
t
u
m
O
p
e
r
a
t
o
r
[
"
X
"
]
O
u
t
[
1
]
=
Q
u
a
n
t
u
m
O
p
e
r
a
t
o
r
P
i
c
t
u
r
e
:
P
h
a
s
e
S
p
a
c
e
A
r
i
t
y
:
1
D
i
m
e
n
s
i
o
n
:
4
→
4
Q
u
d
i
t
s
:
1
→
1
Show its representation in the phase space:
I
n
[
2
]
:
=
T
r
a
d
i
t
i
o
n
a
l
F
o
r
m
[
o
p
]
O
u
t
[
2
]
=
1
0
0
1
0
0
+
2
0
0
2
0
0
-
4
0
0
4
0
0
-
3
0
0
3
0
0
Wigner transformation of a quantum circuit (pay attention to wire dimensions):
I
n
[
1
]
:
=
q
c
=
Q
u
a
n
t
u
m
W
i
g
n
e
r
T
r
a
n
s
f
o
r
m
Q
u
a
n
t
u
m
C
i
r
c
u
i
t
O
p
e
r
a
t
o
r
[
"
B
e
l
l
"
]
;
q
c
[
"
D
i
a
g
r
a
m
"
,
"
S
h
o
w
W
i
r
e
D
i
m
e
n
s
i
o
n
s
"
T
r
u
e
]
O
u
t
[
1
]
=
Return the result of circuit on a register state:
I
n
[
2
]
:
=
q
c
[
]
[
"
A
m
p
l
i
t
u
d
e
s
"
]
O
u
t
[
2
]
=
1
0
0
1
0
0
1
1
6
,
1
0
0
2
0
0
0
,
1
0
0
4
0
0
0
,
1
0
0
3
0
0
0
,
2
0
0
1
0
0
0
,
2
0
0
2
0
0
1
1
6
,
2
0
0
4
0
0
0
,
2
0
0
3
0
0
0
,
4
0
0
1
0
0
0
,
4
0
0
2
0
0
0
,
4
0
0
4
0
0
1
1
6
,
4
0
0
3
0
0
0
,
3
0
0
1
0
0
0
,
3
0
0
2
0
0
0
,
3
0
0
4
0
0
0
,
3
0
0
3
0
0
-
1
1
6
Check that the Weyl transformation of the outcome is the same as the Bell state:
I
n
[
3
]
:
=
Q
u
a
n
t
u
m
W
e
y
l
T
r
a
n
s
f
o
r
m
[
q
c
[
]
]
[
"
F
o
r
m
u
l
a
"
]
O
u
t
[
3
]
=
1
2
|
0
0
〉
+
1
2
|
1
1
〉
S
c
o
p
e
(
9
)
G
e
n
e
r
a
l
i
z
a
t
i
o
n
s
&
E
x
t
e
n
s
i
o
n
s
(
4
)
A
p
p
l
i
c
a
t
i
o
n
s
(
6
)
I
n
t
e
r
a
c
t
i
v
e
E
x
a
m
p
l
e
s
(
2
)
S
e
e
A
l
s
o
Q
u
a
n
t
u
m
S
t
a
t
e
▪
Q
u
a
n
t
u
m
B
a
s
i
s
▪
Q
u
a
n
t
u
m
O
p
e
r
a
t
o
r
R
e
l
a
t
e
d
G
u
i
d
e
s
▪
W
o
l
f
r
a
m
Q
u
a
n
t
u
m
C
o
m
p
u
t
a
t
i
o
n
F
r
a
m
e
w
o
r
k
"
"