Wolfram Language Paclet Repository

Community-contributed installable additions to the Wolfram Language

Primary Navigation

    • Cloud & Deployment
    • Core Language & Structure
    • Data Manipulation & Analysis
    • Engineering Data & Computation
    • External Interfaces & Connections
    • Financial Data & Computation
    • Geographic Data & Computation
    • Geometry
    • Graphs & Networks
    • Higher Mathematical Computation
    • Images
    • Knowledge Representation & Natural Language
    • Machine Learning
    • Notebook Documents & Presentation
    • Scientific and Medical Data & Computation
    • Social, Cultural & Linguistic Data
    • Strings & Text
    • Symbolic & Numeric Computation
    • System Operation & Setup
    • Time-Related Computation
    • User Interface Construction
    • Visualization & Graphics
    • Random Paclet
    • Alphabetical List
  • Using Paclets
    • Get Started
    • Download Definition Notebook
  • Learn More about Wolfram Language

QuantumFramework

Tutorials

  • Getting Started

Guides

  • Wolfram Quantum Computation Framework

Tech Notes

  • Bell's Theorem
  • Circuit Diagram
  • Example Repository Functions
  • Exploring Fundamentals of Quantum Theory
  • Quantum object abstraction
  • Tensor Network
  • Quantum Computation

Symbols

  • QuantumBasis
  • QuantumChannel
  • QuantumCircuitMultiwayGraph [EXPERIMENTAL]
  • QuantumCircuitOperator
  • QuantumDistance
  • QuantumEntangledQ
  • QuantumEntanglementMonotone
  • QuantumEvolve
  • QuantumMeasurement
  • QuantumMeasurementOperator
  • QuantumMeasurementSimulation
  • QuantumMPS [EXPERIMENTAL]
  • QuantumOperator
  • QuantumPartialTrace
  • QuantumPhaseSpaceTransform
  • QuantumShortcut [EXPERIMENTAL]
  • QuantumStateEstimate [EXPERIMENTAL]
  • QuantumState
  • QuantumTensorProduct
  • QuantumWignerMICTransform [EXPERIMENTAL]
  • QuantumWignerTransform [EXPERIMENTAL]
  • QuditBasis
  • QuditName
Wolfram`QuantumFramework`
QuantumTensorProduct
​
​
QuantumTensorProduct
[objects]
gives the tensor product of the quantum objects in the list or sequence
objects
.
​
Details and Options

Examples  
(5)
Basic Examples  
(4)
Compute the tensor product of two pure states:
In[1]:=
QuantumTensorProduct

QuantumState
["0"],
QuantumState
["Bell"]
Out[1]=
QuantumState
Pure state
Qudits: 3
Type: Vector
Dimension: 8

​
Construct the tensor product of two quantum bases:
In[1]:=
QuantumTensorProduct

QuantumBasis
["X"],
QuantumBasis
["Wigner"]
Out[1]=
QuantumBasis
Picture: Schrödinger
Rank: 3
Dimension: 8
​

Return basis names (label):
In[2]:=
%["Names"]
Out[2]=


+
1

00
,

+
2

00
,

+
4

00
,

+
3

00
,

−
1

00
,

−
2

00
,

−
4

00
,

−
3

00

​
Find the tensor product of two quantum operators:
In[1]:=
QuantumTensorProduct

QuantumOperator
["Z"],
QuantumOperator
["X"]
Out[1]=
QuantumOperator
Picture: Schrödinger
Arity: 2
Dimension: 4→4
Qudits: 2→2

​
Get the tensor product of two quantum measurement operator:
In[1]:=
QuantumTensorProduct

QuantumMeasurementOperator
["Z",{1}],
QuantumMeasurementOperator
["X",{2}]
Out[1]=
QuantumMeasurementOperator
Measurement Type: Projection
Target: {1,2}
Dimension: 4→4
Qudits: 2→2

Scope  
(1)

SeeAlso
QuantumState
 
▪
QuantumBasis
 
▪
QuantumPartialTrace
RelatedGuides
▪
Wolfram Quantum Computation Framework
""

© 2025 Wolfram. All rights reserved.

  • Legal & Privacy Policy
  • Contact Us
  • WolframAlpha.com
  • WolframCloud.com