Wolfram Language Paclet Repository

Community-contributed installable additions to the Wolfram Language

Primary Navigation

    • Cloud & Deployment
    • Core Language & Structure
    • Data Manipulation & Analysis
    • Engineering Data & Computation
    • External Interfaces & Connections
    • Financial Data & Computation
    • Geographic Data & Computation
    • Geometry
    • Graphs & Networks
    • Higher Mathematical Computation
    • Images
    • Knowledge Representation & Natural Language
    • Machine Learning
    • Notebook Documents & Presentation
    • Scientific and Medical Data & Computation
    • Social, Cultural & Linguistic Data
    • Strings & Text
    • Symbolic & Numeric Computation
    • System Operation & Setup
    • Time-Related Computation
    • User Interface Construction
    • Visualization & Graphics
    • Random Paclet
    • Alphabetical List
  • Using Paclets
    • Get Started
    • Download Definition Notebook
  • Learn More about Wolfram Language

QuantumFramework

Tutorials

  • Getting Started

Guides

  • Wolfram Quantum Computation Framework

Tech Notes

  • Bell's Theorem
  • Circuit Diagram
  • Exploring Fundamentals of Quantum Theory
  • Quantum object abstraction
  • Tensor Network

Symbols

  • QuantumBasis
  • QuantumChannel
  • QuantumCircuitMultiwayGraph [EXPERIMENTAL]
  • QuantumCircuitOperator
  • QuantumDistance
  • QuantumEntangledQ
  • QuantumEntanglementMonotone
  • QuantumEvolve
  • QuantumMeasurement
  • QuantumMeasurementOperator
  • QuantumMeasurementSimulation
  • QuantumMPS [EXPERIMENTAL]
  • QuantumOperator
  • QuantumPartialTrace
  • QuantumShortcut [EXPERIMENTAL]
  • QuantumStateEstimate [EXPERIMENTAL]
  • QuantumState
  • QuantumTensorProduct
  • QuantumWignerMICTransform [EXPERIMENTAL]
  • QuantumWignerTransform [EXPERIMENTAL]
  • QuditBasis
  • QuditName
Wolfram`QuantumFramework`
QuantumWignerMICTransform
[
EXPERIMENTAL
]
​
QuantumWignerMICTransform[obj]
transforms obj into a minimal informationally complete basis
​
Details and Options

Examples  
(2)
Basic Examples  
(2)
MIC basis of a d-dimension has
2
d
elements
In[1]:=
QuantumBasis
["WignerMIC"]["Names"]
Out[1]=

1
ℳ
1
,
1
ℳ
2
,
2
ℳ
1
,
2
ℳ
2

In[2]:=
QuantumBasis
["WignerMIC"[3]]["Names"]
Out[2]=
{|
ℳ
1
〉,|
ℳ
2
〉,|
ℳ
3
〉,|
ℳ
4
〉,|
ℳ
5
〉,|
ℳ
6
〉,|
ℳ
7
〉,|
ℳ
8
〉,|
ℳ
9
〉}
​
Transform a random basis into MIC basis
In[1]:=
st=
QuantumState
["RandomPure"]
Out[1]=
QuantumState
Pure state
Qudits: 1
Type: Vector
Dimension: 2
Picture: Schrödinger
​

In[2]:=
QuantumWignerMICTransform[st]
Out[2]=
QuantumState
Pure state
Qudits: 1
Type: Vector
Dimension: 4
Picture: PhaseSpace
​

Show the formula in the MIC basis:
In[3]:=
%["Formula"]
Out[3]=
0.218027|
1
ℳ
1
+0.166599|
1
ℳ
2
+0.339418|
2
ℳ
1
+0.275955|
2
ℳ
2

Transform back the state into computational basis
In[4]:=
QuantumWeylTransform[QuantumWignerMICTransform[st]]st
Out[4]=
True
SeeAlso
QuantumState
 
▪
QuantumCircuitOperator
 
▪
QuantumWignerTransform
""

© 2025 Wolfram. All rights reserved.

  • Legal & Privacy Policy
  • Contact Us
  • WolframAlpha.com
  • WolframCloud.com