There are many properties that can be extracted from a QuantumMeasurement object:
In[139]:=
result["Probabilities"]
Out[139]=
|
+
〉0.592819,|
−
〉0.407181
Use property
"Distribution"
to obtain the resulting measurement outcome's distribution:
In[135]:=
result["Distribution"]
Out[135]=
CategoricalDistribution
Inputtype:Scalar
Categories:
|
+
〉
|
−
〉
Use property
"States"
to obtain the possible states after measurement:
In[140]:=
TraditionalForm@result["States"]
Out[140]//TraditionalForm=
{
(-0.769923-0.00617715)|
+
〉
,
(-0.318654+0.552848)|
−
〉
}
Use property
"StatesAssociation"
to obtain the association of measurement outcomes with their corresponding quantum state:
In[141]:=
TraditionalForm@result["StatesAssociation"]
Out[141]//TraditionalForm=
|
+
〉
(-0.769923-0.00617715)|
+
〉
,|
−
〉
(-0.318654+0.552848)|
−
〉
Use property
"PostMeasurementState"
to obtain Lüders mixture. It resemble a scenario where a measurement is executed, yet the outcome of that measurement becomes untraceable or is no longer retained.
In[142]:=
TraditionalForm@result["PostMeasurementState"]
Out[142]//TraditionalForm=
(0.592819+0.)|
+
〉〈
+
|+(0.407181+0.)|
−
〉〈
−
|
Find mean-value:
In[143]:=
result["Mean"]
Out[143]=
0.407181
Note by default, the mean value related to outcomes 0 and 1. If different values, they should be assigned when defining QuantumMeasurementOperator