Wolfram Language Paclet Repository

Community-contributed installable additions to the Wolfram Language

Primary Navigation

    • Cloud & Deployment
    • Core Language & Structure
    • Data Manipulation & Analysis
    • Engineering Data & Computation
    • External Interfaces & Connections
    • Financial Data & Computation
    • Geographic Data & Computation
    • Geometry
    • Graphs & Networks
    • Higher Mathematical Computation
    • Images
    • Knowledge Representation & Natural Language
    • Machine Learning
    • Notebook Documents & Presentation
    • Scientific and Medical Data & Computation
    • Social, Cultural & Linguistic Data
    • Strings & Text
    • Symbolic & Numeric Computation
    • System Operation & Setup
    • Time-Related Computation
    • User Interface Construction
    • Visualization & Graphics
    • Random Paclet
    • Alphabetical List
  • Using Paclets
    • Get Started
    • Download Definition Notebook
  • Learn More about Wolfram Language

QuantumFramework

Tutorials

  • Getting Started

Guides

  • Wolfram Quantum Computation Framework

Tech Notes

  • Bell's Theorem
  • Circuit Diagram
  • Exploring Fundamentals of Quantum Theory
  • Quantum object abstraction
  • Tensor Network

Symbols

  • QuantumBasis
  • QuantumChannel
  • QuantumCircuitMultiwayGraph [EXPERIMENTAL]
  • QuantumCircuitOperator
  • QuantumDistance
  • QuantumEntangledQ
  • QuantumEntanglementMonotone
  • QuantumEvolve
  • QuantumMeasurement
  • QuantumMeasurementOperator
  • QuantumMeasurementSimulation
  • QuantumMPS [EXPERIMENTAL]
  • QuantumOperator
  • QuantumPartialTrace
  • QuantumShortcut [EXPERIMENTAL]
  • QuantumStateEstimate [EXPERIMENTAL]
  • QuantumState
  • QuantumTensorProduct
  • QuantumWignerMICTransform [EXPERIMENTAL]
  • QuantumWignerTransform [EXPERIMENTAL]
  • QuditBasis
  • QuditName
Wolfram`QuantumFramework`
QuantumBasis
​
QuantumBasis
["name"]
represents a named quantum basis
"name"
.
​
​
QuantumBasis
[
name
1

b
1
,
name
2

b
2
,…]
represents a quantum basis with basis elements
b
i
, having names
name
i
.
​
​
QuantumBasis
[{
n
1
,
n
2
,…}]
represents a
n
1
×
n
2
×…
dimensional computational basis of a composite system (many qudits).
​
​
QuantumBasis
[n,m]
represents a
m
n
dimensional computational basis of a composite system (
m
qudits, each one,
n
-dimensional).
​
​
QuantumBasis
[{{
n
1
,
n
2
,…},{
m
1
,
m
2
,…}}]
represents a
n
1
×
n
2
×…
dimensional computational basis output qudits, and
m
1
×
m
2
×…
dimensional of the input qudits. Instead of dimension, one can add named basis, too.
​
Details and Options

Examples  
(21)
Basic Examples  
(10)
Create a 2-dimensional basis:
In[1]:=
QuantumBasis
[2]
Out[1]=
QuantumBasis
Picture: Schrödinger
Rank: 1
Dimension: 2
​

Note with no input, the basis is automatically set to 2D by default:
In[2]:=
QuantumBasis
[2]
QuantumBasis
[]
Out[2]=
True
​
Create a 3-dimensional basis:
In[1]:=
QuantumBasis
[3]
Out[1]=
QuantumBasis
Picture: Schrödinger
Rank: 1
Dimension: 3
​

​
Create a 2×2×2 dimensional basis (three qubits):
In[1]:=
QuantumBasis
[2,3]
Out[1]=
QuantumBasis
Picture: Schrödinger
Rank: 3
Dimension: 8
​

​
Create a composite basis of 2- and 3-dimensional qudits (a qubit with a qutrit):
In[1]:=
QuantumBasis
[{2,3}]
Out[1]=
QuantumBasis
Picture: Schrödinger
Rank: 2
Dimension: 6
​

​
Create a 2-dimensional basis using an explicit element representation with arbitrary names:
In[1]:=
QuantumBasis
["↓"{1,2},"↑"{0,1}]
Out[1]=
QuantumBasis
Picture: Schrödinger
Rank: 1
Dimension: 2
​

​
Construct a Pauli-Y basis:
In[1]:=
basis=
QuantumBasis
["Y"]
Out[1]=
QuantumBasis
Picture: Schrödinger
Rank: 1
Dimension: 2
​

​
Construct a Bell basis for a single 4-dimensional qudit (quqrit):
In[1]:=
basis=
QuantumBasis
["Bell"]
Out[1]=
QuantumBasis
Picture: Schrödinger
Rank: 1
Dimension: 4
​

Return its association (basis names with corresponding representations):
In[2]:=
basis["Association"]
Out[2]=

-
Φ

1
2
,0,0,-
1
2
,
-
Ψ
0,
1
2
,-
1
2
,0,
+
Ψ
0,
1
2
,
1
2
,0,
+
Φ

1
2
,0,0,
1
2

​
A quantum basis with Pauli-X as the output and computational 2-dimensional basis as the input:
In[1]:=
QuantumBasis
[{"X"},{2}]
Out[1]=
QuantumBasis
Picture: Schrödinger
Rank: 2
Dimension: 4
​

Show its elements:
In[2]:=
QuantumBasis
[{"X"},{2}]["Association"]
Out[2]=


+
0SparseArray
Specified elements: 2
Dimensions: {2,2}
,

+
1SparseArray
Specified elements: 2
Dimensions: {2,2}
,

−
0SparseArray
Specified elements: 2
Dimensions: {2,2}
,

−
1SparseArray
Specified elements: 2
Dimensions: {2,2}

​
The elements of a 3-dimensional
QuantumBasis
can be arbitrary (potentially non-orthonormal) vectors:
In[1]:=
QuantumBasis
["a"{1,-3,0},"b"{3,1,2},"c"{2,-1,4}]
Out[1]=
QuantumBasis
Picture: Schrödinger
Rank: 1
Dimension: 3
​

Return the list of its orthogonalized basis elements:
In[2]:=
%["OrthogonalElements"]
Out[2]=

1
10
,-
3
10
,0,
3
14
,
1
14
,
2
7
,-
3
35
,-
1
35
,
5
7

​
Represent the 2-dimensional Schwinger basis of rank-2 (matrix) elements:
In[1]:=
QuantumBasis
["Schwinger"]
Out[1]=
QuantumBasis
Picture: Schrödinger
Rank: 2
Dimension: 4
​

In[2]:=
%["Association"]
Out[2]=
|
S
00
〉{{1,0},{0,1}},|
S
01
〉{{1,0},{0,-1}},|
S
10
〉{{0,1},{1,0}},|
S
11
〉{{0,-1},{1,0}}
Generalizations & Extensions  
(1)

Applications  
(4)

Properties & Relations  
(5)

Interactive Examples  
(1)

SeeAlso
QuantumState
 
▪
QuantumTensorProduct
 
▪
QuantumOperator
RelatedGuides
▪
Wolfram Quantum Computation Framework

© 2025 Wolfram. All rights reserved.

  • Legal & Privacy Policy
  • Contact Us
  • WolframAlpha.com
  • WolframCloud.com