Wolfram Language Paclet Repository

Community-contributed installable additions to the Wolfram Language

Primary Navigation

    • Cloud & Deployment
    • Core Language & Structure
    • Data Manipulation & Analysis
    • Engineering Data & Computation
    • External Interfaces & Connections
    • Financial Data & Computation
    • Geographic Data & Computation
    • Geometry
    • Graphs & Networks
    • Higher Mathematical Computation
    • Images
    • Knowledge Representation & Natural Language
    • Machine Learning
    • Notebook Documents & Presentation
    • Scientific and Medical Data & Computation
    • Social, Cultural & Linguistic Data
    • Strings & Text
    • Symbolic & Numeric Computation
    • System Operation & Setup
    • Time-Related Computation
    • User Interface Construction
    • Visualization & Graphics
    • Random Paclet
    • Alphabetical List
  • Using Paclets
    • Get Started
    • Download Definition Notebook
  • Learn More about Wolfram Language

QuantumFramework

Tutorials

  • Getting Started

Guides

  • Wolfram Quantum Computation Framework

Tech Notes

  • Exploring Fundamentals of Quantum Theory
  • Quantum Computation

Symbols

  • QuantumBasis
  • QuantumChannel
  • QuantumCircuitOperator
  • QuantumDistance
  • QuantumEntangledQ
  • QuantumEntanglementMonotone
  • QuantumMeasurement
  • QuantumMeasurementOperator
  • QuantumOperator
  • QuantumPartialTrace
  • QuantumState
  • QuantumTensorProduct
  • QuditBasis
  • QuditName
Wolfram`QuantumFramework`
QuantumDistance
​
QuantumDistance
[
qs
1
,
qs
2
]
returns the distance between the quantum discrete states
qs
1
and
qs
2
, defined as 1 minus the fidelity.
​
​
QuantumDistance
[
qs
1
,
qs
2
,t]
returns the distance between two quantum discrete states using measure
t
.
​
Details and Options

Examples  
(7)
Basic Examples  
(4)
Find the distance between two pure states in terms of (1-fidelity):
In[1]:=
QuantumDistance

QuantumState
[{1,0}],
QuantumState
[{0,1}]
Out[1]=
0
​
Find the distance between two mixed states:
In[1]:=
QuantumDistance

QuantumState
[{{1/4,0},{0,3/4}}],
QuantumState
[{{1,0},{0,1}}]
Out[1]=
2
1
2
+
3
2
​
Find the distance between a pure state and a mixed state:
In[1]:=
QuantumDistance

QuantumState
[{{1/4,0},{0,3/4}}],
QuantumState
[{1,0}]
Out[1]=
1
4
​
Find the distance between two quantum states using the trace metric:
In[1]:=
QuantumDistance

QuantumState
[{{1/4,1},{1,3/4}}],
QuantumState
[{{1/2,2},{2,1/2}}],"Trace"
Out[1]=
17
4
Scope  
(2)

Applications  
(1)

SeeAlso
QuantumState
RelatedGuides
▪
Wolfram Quantum Computation Framework
""

Powered by the Wolfram Cloud More about Wolfram Technology

© 2022 Wolfram Research, Inc. All rights reserved. Terms of Use Privacy Contact Us