Wolfram Language Paclet Repository

Community-contributed installable additions to the Wolfram Language

Primary Navigation

    • Cloud & Deployment
    • Core Language & Structure
    • Data Manipulation & Analysis
    • Engineering Data & Computation
    • External Interfaces & Connections
    • Financial Data & Computation
    • Geographic Data & Computation
    • Geometry
    • Graphs & Networks
    • Higher Mathematical Computation
    • Images
    • Knowledge Representation & Natural Language
    • Machine Learning
    • Notebook Documents & Presentation
    • Scientific and Medical Data & Computation
    • Social, Cultural & Linguistic Data
    • Strings & Text
    • Symbolic & Numeric Computation
    • System Operation & Setup
    • Time-Related Computation
    • User Interface Construction
    • Visualization & Graphics
    • Random Paclet
    • Alphabetical List
  • Using Paclets
    • Get Started
    • Download Definition Notebook
  • Learn More about Wolfram Language

GeometricAlgebra

Guides

  • Dual numbers
  • Geometric Algebra
  • Matrix Gateway

Tech Notes

  • Conformal Geometry
  • Dual numbers
  • Geometric Numbers
  • Matrix Gateway
  • Operator Duality
  • Projective Geometry
  • Spinors

Symbols

  • ConvertGeometricAlgebra
  • GeometricAlgebra
  • GeometricProduct
  • Grade
  • Multivector
Operator Duality
Complement reflection with respect to a point dual to a plane
In[315]:=
<<Wolfram`GeometricAlgebra`ProjectiveGeometry`
In[316]:=
g=PGAPlane[{1,0,0},1/4]
Out[316]=
e
423
+
1
4
e
321
In[317]:=
g
//PGAPoint
Out[317]=
Point[{4,0,0}]
In[662]:=
reflection=PGAPoint[AntiGeometricProduct[g,Point[{x,y,0}],

g
]]〚1,;;2〛
Out[662]=
-
1
2
-x,y
In[663]:=
f[{x_,y_}]:=Sin[2Pix]​​DensityPlot[f[reflection],{x,-4,4},{y,-4,4},ColorFunction"BlueGreenYellow",PlotPoints100,FrameTrue,AxesTrue,Epilog{Thick,Red,InfiniteLine[{{-1/4,0},{-1/4,4}}]},AxesLabel{Style["x",Italic,18],Style["y",Italic,18]}]
Out[664]=
In[655]:=
antiReflection=PGAPoint
GeometricProduct
[
g
,Point[{x,y,0}],

g
]1,;;2
Out[655]=

x
-1+
x
2
,-
y
-1+
x
2

In[658]:=
VectorDensityPlot[antiReflection,{x,-2,6},{y,-4,4},FrameTrue,AxesTrue,Epilog{Thick,PointSize[Large],Red,InfiniteLine[{{0,0},{0,4}}],Point[{4,0}],White,InfiniteLine[{{2,0},{2,1}}]},AxesLabel{Style["x",Italic,18],Style["y",Italic,18]}]​​
Out[658]=
In[665]:=
ComplexPlot
Re[z]
-1+
Re[z]
2
-I
Im[z]
-1+
Re[z]
2
,{z,-2-4I,6+4I}
Out[665]=
Complement rotation:
In[638]:=
R=PGARotor[InfiniteLine[{{1/2,0,0},{1/2,0,1}}],phi]
Out[638]=
Sin
phi
2

e
43
+-
1
2
Sin
phi
2

e
31
+Cos
phi
2

In[652]:=
stream=Simplify[PGAPoint@AntiGeometricProduct[R,Point[{x,y,0}],

R
]]〚1,;;2〛
Out[652]=

1
2
+-
1
2
+xCos[phi]-ySin[phi],yCos[phi]-
Sin[phi]
2
+xSin[phi]
In[653]:=
StreamPlot[D[stream,phi]/.phi0,{x,-4,4},{y,-4,4}]
Out[653]=
In[656]:=
antiStream=SimplifyPGAPoint@
GeometricProduct

R
,Point[{x,y,0}],

R
1,;;2
Out[656]=

2xCos[phi]-2ySin[phi]
2+x-xCos[phi]+ySin[phi]
,
2(yCos[phi]+xSin[phi])
2+x-xCos[phi]+ySin[phi]

In[657]:=
StreamPlot[D[antiStream,phi]/.phi0,{x,-4,4},{y,-4,4}]
Out[657]=
""

© 2025 Wolfram. All rights reserved.

  • Legal & Privacy Policy
  • Contact Us
  • WolframAlpha.com
  • WolframCloud.com