Wolfram Language Paclet Repository

Community-contributed installable additions to the Wolfram Language

Primary Navigation

    • Cloud & Deployment
    • Core Language & Structure
    • Data Manipulation & Analysis
    • Engineering Data & Computation
    • External Interfaces & Connections
    • Financial Data & Computation
    • Geographic Data & Computation
    • Geometry
    • Graphs & Networks
    • Higher Mathematical Computation
    • Images
    • Knowledge Representation & Natural Language
    • Machine Learning
    • Notebook Documents & Presentation
    • Scientific and Medical Data & Computation
    • Social, Cultural & Linguistic Data
    • Strings & Text
    • Symbolic & Numeric Computation
    • System Operation & Setup
    • Time-Related Computation
    • User Interface Construction
    • Visualization & Graphics
    • Random Paclet
    • Alphabetical List
  • Using Paclets
    • Get Started
    • Download Definition Notebook
  • Learn More about Wolfram Language

GeometricAlgebra

Guides

  • Dual numbers
  • Geometric Algebra
  • Matrix Gateway

Tech Notes

  • Conformal Geometry
  • Dual numbers
  • Geometric Numbers
  • Matrix Gateway
  • Operator Duality
  • Projective Geometry
  • Spinors

Symbols

  • ConvertGeometricAlgebra
  • GeometricAlgebra
  • GeometricProduct
  • Grade
  • Multivector
Dual numbers
Standalone and Geometric Algebra based dual numbers
Dual
constructor for dual numbers
DualRe
real part
DualEps
dual part
XXXX.
Symbolic rule-based dual numbers:
In[41]:=
eps=Dual[0,1]
Out[41]=
ϵ
In[42]:=
eps^2
Out[42]=
0
In[39]:=
Dual[a,b]
Out[39]=
a+bϵ
In[40]:=
Dual[a,b]^2
Out[40]=
2
a
+2abϵ
In[43]:=
Exp[Dual[a,b]]
Out[43]=
a

+b
a

ϵ
In[1542]:=
ArcCos[Dual[a,b,c]]
Out[1542]=
ArcCos[a]-
b
1-
2
a
ϵ
1
-
c
1-
2
a
ϵ
2
-
abc
3/2
(1-
2
a
)
ϵ
12
In[1546]:=
D[ArcCos[a],{a,2}]
Out[1546]=
-
a
3/2
(1-
2
a
)
Multivector dual numbers:
In[1630]:=
MultivectorFunctionArcCos,
Multivector
[{a,b},{0,0,1}]
Out[1630]=
ArcCos[a]+-
b
1-
2
a
e
1
In[1672]:=
Multivector
[{a,0,0,b,c},{1,0,2}]
Out[1672]=
a+b
e
3
+c
e
12
In[1670]:=
MultivectorFunctionArcCos,
Multivector
[{a,0,0,b,c},{1,0,2}]//FullSimplify
Out[1670]=
ArcCos[a]+-
b
1-
2
a
e
3
+-
c
1-
2
a
e
12
+-
abc
3/2
(1-
2
a
)
e
123
""

© 2025 Wolfram. All rights reserved.

  • Legal & Privacy Policy
  • Contact Us
  • WolframAlpha.com
  • WolframCloud.com