Wolfram Language Paclet Repository

Community-contributed installable additions to the Wolfram Language

Primary Navigation

    • Cloud & Deployment
    • Core Language & Structure
    • Data Manipulation & Analysis
    • Engineering Data & Computation
    • External Interfaces & Connections
    • Financial Data & Computation
    • Geographic Data & Computation
    • Geometry
    • Graphs & Networks
    • Higher Mathematical Computation
    • Images
    • Knowledge Representation & Natural Language
    • Machine Learning
    • Notebook Documents & Presentation
    • Scientific and Medical Data & Computation
    • Social, Cultural & Linguistic Data
    • Strings & Text
    • Symbolic & Numeric Computation
    • System Operation & Setup
    • Time-Related Computation
    • User Interface Construction
    • Visualization & Graphics
    • Random Paclet
    • Alphabetical List
  • Using Paclets
    • Get Started
    • Download Definition Notebook
  • Learn More about Wolfram Language

GeometricAlgebra

Guides

  • Dual numbers
  • Geometric Algebra
  • Matrix Gateway

Tech Notes

  • Conformal Geometry
  • Dual numbers
  • Geometric Numbers
  • Matrix Gateway
  • Operator Duality
  • Projective Geometry
  • Spinors

Symbols

  • ConvertGeometricAlgebra
  • GeometricAlgebra
  • GeometricProduct
  • Grade
  • Multivector
Wolfram`GeometricAlgebra`
Multivector
​
Multivector
[coords,ga]
returns a multivector with specified coordinates in a given
GeometricAlgebra
​
Examples  
(1)
Basic Examples  
(1)
Make a multivector in the default

3
algebra:
In[1]:=
Multivector
[{2,3,4,5}]
Out[1]=
2+3
e
1
+4
e
2
+5
e
3
Make a multivector in the

3,1
algebra:
In[2]:=
Multivector
[{0,x,y,z,y},{3,1}]
Out[2]=
x
e
1
+y
e
2
+z
e
3
+y
e
1
List the supported properties:
In[3]:=
Multivector
[{1,2}]["Properties"]
Out[3]=
{GeometricAlgebra,Coordinates,Coordinate,Association,Span,Grade,Flatten,Scalar,Pseudoscalar,Real,ComplexCoordinates,Reverse,Involute,Conjugate,LeftComplement,RightComplement,DoubleComplement,Squared,Norm,Normalized,Inverse,LeftDual,RightDual,Tr,Det}
SeeAlso
MultivectorArray
RelatedGuides
▪
Geometric Algebra
""

© 2025 Wolfram. All rights reserved.

  • Legal & Privacy Policy
  • Contact Us
  • WolframAlpha.com
  • WolframCloud.com