Wolfram Language
Paclet Repository
Community-contributed installable additions to the Wolfram Language
Primary Navigation
Categories
Cloud & Deployment
Core Language & Structure
Data Manipulation & Analysis
Engineering Data & Computation
External Interfaces & Connections
Financial Data & Computation
Geographic Data & Computation
Geometry
Graphs & Networks
Higher Mathematical Computation
Images
Knowledge Representation & Natural Language
Machine Learning
Notebook Documents & Presentation
Scientific and Medical Data & Computation
Social, Cultural & Linguistic Data
Strings & Text
Symbolic & Numeric Computation
System Operation & Setup
Time-Related Computation
User Interface Construction
Visualization & Graphics
Random Paclet
Alphabetical List
Using Paclets
Create a Paclet
Get Started
Download Definition Notebook
Learn More about
Wolfram Language
LinearAlgebraPaclet
Guides
Systems of Linear Equations
Symbols
CofactorMatrix
ConsistentMatrixQ
DiagonalizeMatrix
PeterBurbery`LinearAlgebraPaclet`
D
i
a
g
o
n
a
l
i
z
e
M
a
t
r
i
x
D
i
a
g
o
n
a
l
i
z
e
M
a
t
r
i
x
[
m
a
t
r
i
x
]
D
o
t
h
e
c
o
m
p
u
t
a
t
i
o
n
t
o
o
b
t
a
i
n
a
d
i
a
g
o
n
a
l
i
z
e
d
f
o
r
m
o
f
t
h
e
m
a
t
r
i
x
m
a
t
r
i
x
Examples
(
1
)
Basic Examples
(
1
)
Obtain the diagonalized form of a Cauchy matrix:
I
n
[
1
]
:
=
C
a
u
c
h
y
M
a
t
r
i
x
[
{
1
,
2
,
3
}
,
{
4
,
5
,
6
}
]
/
/
M
a
t
r
i
x
F
o
r
m
O
u
t
[
1
]
/
/
M
a
t
r
i
x
F
o
r
m
=
1
5
1
6
1
7
1
6
1
7
1
8
1
7
1
8
1
9
I
n
[
2
]
:
=
D
i
a
g
o
n
a
l
i
z
e
M
a
t
r
i
x
1
5
1
6
1
7
1
6
1
7
1
8
1
7
1
8
1
9
O
u
t
[
2
]
=
0
.
4
4
8
…
,
0
,
0
,
0
,
3
.
9
6
…
×
-
5
1
0
,
0
,
0
,
0
,
6
.
3
4
…
×
-
3
1
0
Some matrices aren't diagonalizable:
I
n
[
3
]
:
=
D
i
a
g
o
n
a
l
i
z
e
M
a
t
r
i
x
0
1
0
0
O
u
t
[
3
]
=
D
i
a
g
o
n
a
l
i
z
e
M
a
t
r
i
x
[
{
{
0
,
1
}
,
{
0
,
0
}
}
]
S
e
e
A
l
s
o
"
X
X
X
X
"
"
"