Wolfram Language
Paclet Repository
Community-contributed installable additions to the Wolfram Language
Primary Navigation
Categories
Cloud & Deployment
Core Language & Structure
Data Manipulation & Analysis
Engineering Data & Computation
External Interfaces & Connections
Financial Data & Computation
Geographic Data & Computation
Geometry
Graphs & Networks
Higher Mathematical Computation
Images
Knowledge Representation & Natural Language
Machine Learning
Notebook Documents & Presentation
Scientific and Medical Data & Computation
Social, Cultural & Linguistic Data
Strings & Text
Symbolic & Numeric Computation
System Operation & Setup
Time-Related Computation
User Interface Construction
Visualization & Graphics
Random Paclet
Alphabetical List
Using Paclets
Create a Paclet
Get Started
Download Definition Notebook
Learn More about
Wolfram Language
LinearAlgebraPaclet
Guides
Systems of Linear Equations
Symbols
CofactorMatrix
ConsistentMatrixQ
DiagonalizeMatrix
PeterBurbery`LinearAlgebraPaclet`
C
o
n
s
i
s
t
e
n
t
M
a
t
r
i
x
Q
C
o
n
s
i
s
t
e
n
t
M
a
t
r
i
x
Q
[
m
a
t
r
i
x
]
D
o
a
c
a
l
c
u
l
a
t
i
o
n
t
o
d
e
t
e
r
m
i
n
e
i
f
t
h
e
p
a
r
a
m
e
t
e
r
m
a
t
r
i
x
r
e
p
r
e
s
e
n
t
s
a
c
o
n
s
i
s
t
e
n
t
s
y
s
t
e
m
o
f
l
i
n
e
a
r
e
q
u
a
t
i
o
n
s
.
D
e
t
a
i
l
s
a
n
d
O
p
t
i
o
n
s
Examples
(
1
)
Basic Examples
(
1
)
Determine if an augmented matrix represents a consistent linear system of equations:
I
n
[
1
]
:
=
C
o
n
s
i
s
t
e
n
t
M
a
t
r
i
x
Q
1
7
3
-
4
0
1
-
1
3
0
0
0
1
0
0
1
-
2
O
u
t
[
1
]
=
F
a
l
s
e
The reduced row echelon form contains a contradiction that
0
x
1
+
0
x
2
+
0
x
3
=
1
so the matrix is not consistent:
I
n
[
2
]
:
=
R
o
w
R
e
d
u
c
e
1
7
3
-
4
0
1
-
1
3
0
0
0
1
0
0
1
-
2
/
/
M
a
t
r
i
x
F
o
r
m
O
u
t
[
2
]
/
/
M
a
t
r
i
x
F
o
r
m
=
1
0
0
0
0
1
0
0
0
0
1
0
0
0
0
1
The solution set is empty. No solutions exist:
I
n
[
3
]
:
=
L
i
n
e
a
r
S
o
l
v
e
M
a
p
[
M
o
s
t
]
1
7
3
-
4
0
1
-
1
3
0
0
0
1
0
0
1
-
2
(
*
t
h
e
c
o
e
f
f
i
c
i
e
n
t
m
a
t
r
i
x
*
)
,
M
a
p
[
L
a
s
t
]
1
7
3
-
4
0
1
-
1
3
0
0
0
1
0
0
1
-
2
(
*
t
h
e
r
i
g
h
t
m
o
s
t
c
o
l
u
m
n
*
)
O
u
t
[
3
]
=
L
i
n
e
a
r
S
o
l
v
e
[
{
{
1
,
7
,
3
}
,
{
0
,
1
,
-
1
}
,
{
0
,
0
,
0
}
,
{
0
,
0
,
1
}
}
,
{
-
4
,
3
,
1
,
-
2
}
]
I
n
[
4
]
:
=
e
q
n
s
=
{
x
1
+
7
x
2
+
3
x
3
-
4
,
x
2
-
x
3
3
,
0
x
1
+
0
x
2
+
0
x
3
1
,
x
3
-
2
}
;
I
n
[
5
]
:
=
S
o
l
v
e
[
e
q
n
s
,
{
x
1
,
x
2
,
x
3
}
]
O
u
t
[
5
]
=
{
}
The augmented matrix of a linear system is given below. Determine if the system is consistent:
I
n
[
6
]
:
=
C
o
n
s
i
s
t
e
n
t
M
a
t
r
i
x
Q
1
5
2
-
6
0
4
-
7
2
0
0
5
0
O
u
t
[
6
]
=
T
r
u
e
S
e
e
A
l
s
o
"
X
X
X
X
"
"
"