Wolfram Language Paclet Repository

Community-contributed installable additions to the Wolfram Language

Primary Navigation

    • Cloud & Deployment
    • Core Language & Structure
    • Data Manipulation & Analysis
    • Engineering Data & Computation
    • External Interfaces & Connections
    • Financial Data & Computation
    • Geographic Data & Computation
    • Geometry
    • Graphs & Networks
    • Higher Mathematical Computation
    • Images
    • Knowledge Representation & Natural Language
    • Machine Learning
    • Notebook Documents & Presentation
    • Scientific and Medical Data & Computation
    • Social, Cultural & Linguistic Data
    • Strings & Text
    • Symbolic & Numeric Computation
    • System Operation & Setup
    • Time-Related Computation
    • User Interface Construction
    • Visualization & Graphics
    • Random Paclet
    • Alphabetical List
  • Using Paclets
    • Get Started
    • Download Definition Notebook
  • Learn More about Wolfram Language

LinearAlgebraPaclet

Guides

  • Systems of Linear Equations

Symbols

  • CofactorMatrix
  • ConsistentMatrixQ
  • DiagonalizeMatrix
PeterBurbery`LinearAlgebraPaclet`
ConsistentMatrixQ
​
ConsistentMatrixQ
[matrix]
Do a calculation to determine if the parameter
matrix
represents a consistent system of linear equations.
​
Details and Options

Examples  
(1)
Basic Examples  
(1)
Determine if an augmented matrix represents a consistent linear system of equations:
In[1]:=
ConsistentMatrixQ

1
7
3
-4
0
1
-1
3
0
0
0
1
0
0
1
-2

Out[1]=
False
The reduced row echelon form contains a contradiction that
0
x
1
+0
x
2
+0
x
3
=1
so the matrix is not consistent:
In[2]:=
RowReduce
1
7
3
-4
0
1
-1
3
0
0
0
1
0
0
1
-2
//MatrixForm
Out[2]//MatrixForm=
1
0
0
0
0
1
0
0
0
0
1
0
0
0
0
1
The solution set is empty. No solutions exist:
In[3]:=
LinearSolveMap[Most]
1
7
3
-4
0
1
-1
3
0
0
0
1
0
0
1
-2
(*thecoefficientmatrix*),Map[Last]
1
7
3
-4
0
1
-1
3
0
0
0
1
0
0
1
-2
(*therightmostcolumn*)
Out[3]=
LinearSolve[{{1,7,3},{0,1,-1},{0,0,0},{0,0,1}},{-4,3,1,-2}]
In[4]:=
eqns={
x
1
+7
x
2
+3
x
3
-4,
x
2
-
x
3
3,0
x
1
+0
x
2
+0
x
3
1,
x
3
-2};
In[5]:=
Solve[eqns,{
x
1
,
x
2
,
x
3
}]
Out[5]=
{}
The augmented matrix of a linear system is given below. Determine if the system is consistent:
In[6]:=
ConsistentMatrixQ

1
5
2
-6
0
4
-7
2
0
0
5
0

Out[6]=
True
SeeAlso
"XXXX"
""

© 2025 Wolfram. All rights reserved.

  • Legal & Privacy Policy
  • Contact Us
  • WolframAlpha.com
  • WolframCloud.com