Wolfram Language Paclet Repository

Community-contributed installable additions to the Wolfram Language

Primary Navigation

    • Cloud & Deployment
    • Core Language & Structure
    • Data Manipulation & Analysis
    • Engineering Data & Computation
    • External Interfaces & Connections
    • Financial Data & Computation
    • Geographic Data & Computation
    • Geometry
    • Graphs & Networks
    • Higher Mathematical Computation
    • Images
    • Knowledge Representation & Natural Language
    • Machine Learning
    • Notebook Documents & Presentation
    • Scientific and Medical Data & Computation
    • Social, Cultural & Linguistic Data
    • Strings & Text
    • Symbolic & Numeric Computation
    • System Operation & Setup
    • Time-Related Computation
    • User Interface Construction
    • Visualization & Graphics
    • Random Paclet
    • Alphabetical List
  • Using Paclets
    • Get Started
    • Download Definition Notebook
  • Learn More about Wolfram Language

LinearAlgebraPaclet

Guides

  • Systems of Linear Equations

Symbols

  • CofactorMatrix
  • ConsistentMatrixQ
  • DiagonalizeMatrix
PeterBurbery`LinearAlgebraPaclet`
CofactorMatrix
​
CofactorMatrix
[matrix]
does calculations to get the cofactors of the matrix
matrix
​
Examples  
(1)
Basic Examples  
(1)
Do the calculation for the cofactors of a matrix:
In[1]:=
SeedRandom[1];​​
CofactorMatrix
[RandomInteger[{-12,12},{6,6}]]//MatrixForm
Out[1]//MatrixForm=
-140933
-5255
143858
420195
-240107
521396
-330582
-391194
221805
607317
-787083
720267
838770
-17226
-422697
-315168
724248
-779073
-838249
-143167
104968
825861
-1159873
972145
389608
299821
116540
-484494
633013
-824890
273342
376338
-49677
-552243
160272
-128541
Non square matrices don't have cofactors:
In[2]:=
SeedRandom[1];​​
CofactorMatrix
[RandomInteger[{-12,12},{6,7}]]//MatrixForm
Out[2]//MatrixForm=
CofactorMatrix[{{-7,-12,-5,-12,-10,-9,-12},{9,-12,4,11,2,-9,-4},{7,-7,6,4,0,-12,7},{-8,10,9,-5,-9,-12,-8},{8,12,-9,-7,0,7,9},{-4,9,12,-1,-10,-9,-2}}]
SeeAlso
"XXXX"
RelatedGuides
▪
Systems of Linear Equations
""

© 2025 Wolfram. All rights reserved.

  • Legal & Privacy Policy
  • Contact Us
  • WolframAlpha.com
  • WolframCloud.com