Wolfram Language
Paclet Repository
Community-contributed installable additions to the Wolfram Language
Primary Navigation
Categories
Cloud & Deployment
Core Language & Structure
Data Manipulation & Analysis
Engineering Data & Computation
External Interfaces & Connections
Financial Data & Computation
Geographic Data & Computation
Geometry
Graphs & Networks
Higher Mathematical Computation
Images
Knowledge Representation & Natural Language
Machine Learning
Notebook Documents & Presentation
Scientific and Medical Data & Computation
Social, Cultural & Linguistic Data
Strings & Text
Symbolic & Numeric Computation
System Operation & Setup
Time-Related Computation
User Interface Construction
Visualization & Graphics
Random Paclet
Alphabetical List
Using Paclets
Create a Paclet
Get Started
Download Definition Notebook
Learn More about
Wolfram Language
LinearAlgebraPaclet
Guides
Systems of Linear Equations
Symbols
CofactorMatrix
ConsistentMatrixQ
DiagonalizeMatrix
PeterBurbery`LinearAlgebraPaclet`
C
o
f
a
c
t
o
r
M
a
t
r
i
x
C
o
f
a
c
t
o
r
M
a
t
r
i
x
[
m
a
t
r
i
x
]
d
o
e
s
c
a
l
c
u
l
a
t
i
o
n
s
t
o
g
e
t
t
h
e
c
o
f
a
c
t
o
r
s
o
f
t
h
e
m
a
t
r
i
x
m
a
t
r
i
x
Examples
(
1
)
Basic Examples
(
1
)
Do the calculation for the cofactors of a matrix:
I
n
[
1
]
:
=
S
e
e
d
R
a
n
d
o
m
[
1
]
;
C
o
f
a
c
t
o
r
M
a
t
r
i
x
[
R
a
n
d
o
m
I
n
t
e
g
e
r
[
{
-
1
2
,
1
2
}
,
{
6
,
6
}
]
]
/
/
M
a
t
r
i
x
F
o
r
m
O
u
t
[
1
]
/
/
M
a
t
r
i
x
F
o
r
m
=
-
1
4
0
9
3
3
-
5
2
5
5
1
4
3
8
5
8
4
2
0
1
9
5
-
2
4
0
1
0
7
5
2
1
3
9
6
-
3
3
0
5
8
2
-
3
9
1
1
9
4
2
2
1
8
0
5
6
0
7
3
1
7
-
7
8
7
0
8
3
7
2
0
2
6
7
8
3
8
7
7
0
-
1
7
2
2
6
-
4
2
2
6
9
7
-
3
1
5
1
6
8
7
2
4
2
4
8
-
7
7
9
0
7
3
-
8
3
8
2
4
9
-
1
4
3
1
6
7
1
0
4
9
6
8
8
2
5
8
6
1
-
1
1
5
9
8
7
3
9
7
2
1
4
5
3
8
9
6
0
8
2
9
9
8
2
1
1
1
6
5
4
0
-
4
8
4
4
9
4
6
3
3
0
1
3
-
8
2
4
8
9
0
2
7
3
3
4
2
3
7
6
3
3
8
-
4
9
6
7
7
-
5
5
2
2
4
3
1
6
0
2
7
2
-
1
2
8
5
4
1
Non square matrices don't have cofactors:
I
n
[
2
]
:
=
S
e
e
d
R
a
n
d
o
m
[
1
]
;
C
o
f
a
c
t
o
r
M
a
t
r
i
x
[
R
a
n
d
o
m
I
n
t
e
g
e
r
[
{
-
1
2
,
1
2
}
,
{
6
,
7
}
]
]
/
/
M
a
t
r
i
x
F
o
r
m
O
u
t
[
2
]
/
/
M
a
t
r
i
x
F
o
r
m
=
C
o
f
a
c
t
o
r
M
a
t
r
i
x
[
{
{
-
7
,
-
1
2
,
-
5
,
-
1
2
,
-
1
0
,
-
9
,
-
1
2
}
,
{
9
,
-
1
2
,
4
,
1
1
,
2
,
-
9
,
-
4
}
,
{
7
,
-
7
,
6
,
4
,
0
,
-
1
2
,
7
}
,
{
-
8
,
1
0
,
9
,
-
5
,
-
9
,
-
1
2
,
-
8
}
,
{
8
,
1
2
,
-
9
,
-
7
,
0
,
7
,
9
}
,
{
-
4
,
9
,
1
2
,
-
1
,
-
1
0
,
-
9
,
-
2
}
}
]
S
e
e
A
l
s
o
"
X
X
X
X
"
R
e
l
a
t
e
d
G
u
i
d
e
s
▪
S
y
s
t
e
m
s
o
f
L
i
n
e
a
r
E
q
u
a
t
i
o
n
s
"
"