Wolfram Language
Paclet Repository
Community-contributed installable additions to the Wolfram Language
Primary Navigation
Categories
Cloud & Deployment
Core Language & Structure
Data Manipulation & Analysis
Engineering Data & Computation
External Interfaces & Connections
Financial Data & Computation
Geographic Data & Computation
Geometry
Graphs & Networks
Higher Mathematical Computation
Images
Knowledge Representation & Natural Language
Machine Learning
Notebook Documents & Presentation
Scientific and Medical Data & Computation
Social, Cultural & Linguistic Data
Strings & Text
Symbolic & Numeric Computation
System Operation & Setup
Time-Related Computation
User Interface Construction
Visualization & Graphics
Random Paclet
Alphabetical List
Using Paclets
Create a Paclet
Get Started
Download Definition Notebook
Learn More about
Wolfram Language
DimensionalAnalysis
Guides
Dimensional Analysis
Symbols
CanonicalDimensionalProduct
ISQConformantQuantityQ
PhysicalQuantityData
PhysicalQuantityDimensions
QuantityUnitStrings
SIConformantQuantityQ
UnitSystemTransform
PeterBurbery`DimensionalAnalysis`
U
n
i
t
S
y
s
t
e
m
T
r
a
n
s
f
o
r
m
U
n
i
t
S
y
s
t
e
m
T
r
a
n
s
f
o
r
m
[
q
u
a
n
t
i
t
y
,
u
n
i
t
s
y
s
t
e
m
]
t
r
a
n
s
f
o
r
m
s
q
u
a
n
t
i
t
y
i
n
t
o
a
p
r
o
d
u
c
t
o
f
c
o
m
b
i
n
a
t
i
o
n
s
o
f
t
h
e
b
a
s
i
s
q
u
a
n
t
i
t
i
e
s
o
f
u
n
i
t
s
y
s
t
e
m
.
D
e
t
a
i
l
s
a
n
d
O
p
t
i
o
n
s
Examples
(
3
)
Basic Examples
(
2
)
Convert to the Planck unit system:
I
n
[
1
]
:
=
U
n
i
t
S
y
s
t
e
m
T
r
a
n
s
f
o
r
m
[
J
,
"
P
l
a
n
c
k
U
n
i
t
s
"
]
O
u
t
[
1
]
=
5
.
1
1
2
×
-
1
0
1
0
m
P
2
l
P
/
2
t
P
I
n
[
2
]
:
=
U
n
i
t
S
y
s
t
e
m
T
r
a
n
s
f
o
r
m
1
0
0
E
W
,
"
P
l
a
n
c
k
U
n
i
t
s
"
O
u
t
[
2
]
=
2
.
7
5
6
×
-
3
3
1
0
m
P
2
l
P
/
3
t
P
Convert to a set of natural units:
I
n
[
1
]
:
=
U
n
i
t
S
y
s
t
e
m
T
r
a
n
s
f
o
r
m
[
7
W
b
,
"
N
a
t
u
r
a
l
U
n
i
t
s
"
]
O
u
t
[
1
]
=
4
.
2
4
3
×
1
5
1
0
m
P
l
P
R
K
/
t
P
Convert to the SI defining constants:
I
n
[
2
]
:
=
U
n
i
t
S
y
s
t
e
m
T
r
a
n
s
f
o
r
m
[
7
W
b
,
"
S
I
D
e
f
i
n
i
n
g
C
o
n
s
t
a
n
t
s
"
]
O
u
t
[
2
]
=
1
0
6
8
1
1
7
7
5
6
0
0
0
0
0
0
0
0
0
0
0
0
0
6
3
1
0
5
4
3
h
/
e
Convert to Stoney units:
I
n
[
3
]
:
=
U
n
i
t
S
y
s
t
e
m
T
r
a
n
s
f
o
r
m
[
P
a
J
,
"
S
t
o
n
e
y
U
n
i
t
s
"
]
O
u
t
[
3
]
=
6
.
0
1
7
×
-
1
1
6
1
0
2
m
S
λ
S
/
4
t
S
Convert to a custom combination of quantities:
I
n
[
4
]
:
=
U
n
i
t
S
y
s
t
e
m
T
r
a
n
s
f
o
r
m
7
W
b
,
G
,
ℏ
,
R
K
,
c
,
k
O
u
t
[
4
]
=
1
0
6
8
1
1
7
7
5
6
0
0
0
0
0
0
0
0
0
0
0
0
0
2
π
6
3
1
0
5
4
3
ℏ
R
K
Find multiple equivalent forms:
I
n
[
5
]
:
=
U
n
i
t
S
y
s
t
e
m
T
r
a
n
s
f
o
r
m
7
W
b
,
G
,
ℏ
,
R
K
,
c
,
k
,
K
J
,
R
∞
O
u
t
[
5
]
=
2
1
3
6
2
3
5
5
1
2
0
0
0
0
0
0
0
0
0
0
0
0
0
6
3
1
0
5
4
3
/
K
J
,
1
0
6
8
1
1
7
7
5
6
0
0
0
0
0
0
0
0
0
0
0
0
0
2
π
6
3
1
0
5
4
3
ℏ
R
K
,
1
0
6
8
1
1
7
7
5
6
0
0
0
0
0
0
0
0
0
0
0
0
0
π
6
3
1
0
5
4
3
K
J
ℏ
R
K
,
7
.
5
2
5
×
-
1
3
1
0
3
/
2
c
R
K
/
(
R
∞
G
)
,
2
.
3
9
2
1
×
4
3
1
0
R
∞
G
ℏ
R
K
/
3
/
2
c
,
1
.
9
0
8
6
×
4
3
1
0
R
∞
G
ℏ
/
(
K
J
3
/
2
c
)
,
1
.
5
2
2
9
×
4
3
1
0
R
∞
G
/
(
2
K
J
3
/
2
c
R
K
)
P
o
s
s
i
b
l
e
I
s
s
u
e
s
(
1
)
S
e
e
A
l
s
o
"
X
X
X
X
"
R
e
l
a
t
e
d
G
u
i
d
e
s
▪
D
i
m
e
n
s
i
o
n
a
l
A
n
a
l
y
s
i
s
"
"