Wolfram Language
Paclet Repository
Community-contributed installable additions to the Wolfram Language
Primary Navigation
Categories
Cloud & Deployment
Core Language & Structure
Data Manipulation & Analysis
Engineering Data & Computation
External Interfaces & Connections
Financial Data & Computation
Geographic Data & Computation
Geometry
Graphs & Networks
Higher Mathematical Computation
Images
Knowledge Representation & Natural Language
Machine Learning
Notebook Documents & Presentation
Scientific and Medical Data & Computation
Social, Cultural & Linguistic Data
Strings & Text
Symbolic & Numeric Computation
System Operation & Setup
Time-Related Computation
User Interface Construction
Visualization & Graphics
Random Paclet
Alphabetical List
Using Paclets
Create a Paclet
Get Started
Download Definition Notebook
Learn More about
Wolfram Language
DimensionalAnalysis
Guides
Dimensional Analysis
Symbols
CanonicalDimensionalProduct
ISQConformantQuantityQ
PhysicalQuantityData
PhysicalQuantityDimensions
QuantityUnitStrings
SIConformantQuantityQ
UnitSystemTransform
PeterBurbery`DimensionalAnalysis`
P
h
y
s
i
c
a
l
Q
u
a
n
t
i
t
y
D
i
m
e
n
s
i
o
n
s
P
h
y
s
i
c
a
l
Q
u
a
n
t
i
t
y
D
i
m
e
n
s
i
o
n
s
[
p
q
]
f
i
n
d
s
t
h
e
d
i
m
e
n
s
i
o
n
s
o
f
t
h
e
i
n
p
u
t
p
q
.
D
e
t
a
i
l
s
a
n
d
O
p
t
i
o
n
s
Examples
(
2
)
Basic Examples
(
1
)
Find the dimensions for energy density:
I
n
[
1
]
:
=
P
h
y
s
i
c
a
l
Q
u
a
n
t
i
t
y
D
i
m
e
n
s
i
o
n
s
J
/
3
m
O
u
t
[
1
]
=
{
L
e
n
g
t
h
U
n
i
t
,
M
a
s
s
U
n
i
t
,
T
i
m
e
U
n
i
t
}
Find the dimensions for the quantity variable for energy density:
I
n
[
2
]
:
=
P
h
y
s
i
c
a
l
Q
u
a
n
t
i
t
y
D
i
m
e
n
s
i
o
n
s
[
Q
u
a
n
t
i
t
y
V
a
r
i
a
b
l
e
[
"
E
n
e
r
g
y
D
e
n
s
i
t
y
"
]
]
O
u
t
[
2
]
=
{
L
e
n
g
t
h
U
n
i
t
,
M
a
s
s
U
n
i
t
,
T
i
m
e
U
n
i
t
}
Find the dimensions for the physical quantity energy density:
I
n
[
3
]
:
=
P
h
y
s
i
c
a
l
Q
u
a
n
t
i
t
y
D
i
m
e
n
s
i
o
n
s
[
E
n
t
i
t
y
[
"
P
h
y
s
i
c
a
l
Q
u
a
n
t
i
t
y
"
,
"
E
n
e
r
g
y
D
e
n
s
i
t
y
"
]
]
O
u
t
[
3
]
=
{
L
e
n
g
t
h
U
n
i
t
,
M
a
s
s
U
n
i
t
,
T
i
m
e
U
n
i
t
}
Find the dimensions for the Von Klitzing constant:
I
n
[
4
]
:
=
P
h
y
s
i
c
a
l
Q
u
a
n
t
i
t
y
D
i
m
e
n
s
i
o
n
s
[
E
n
t
i
t
y
[
"
P
h
y
s
i
c
a
l
C
o
n
s
t
a
n
t
"
,
"
V
o
n
K
l
i
t
z
i
n
g
C
o
n
s
t
a
n
t
"
]
]
O
u
t
[
4
]
=
{
E
l
e
c
t
r
i
c
C
u
r
r
e
n
t
U
n
i
t
,
L
e
n
g
t
h
U
n
i
t
,
M
a
s
s
U
n
i
t
,
T
i
m
e
U
n
i
t
}
P
o
s
s
i
b
l
e
I
s
s
u
e
s
(
1
)
S
e
e
A
l
s
o
"
X
X
X
X
"
R
e
l
a
t
e
d
G
u
i
d
e
s
▪
D
i
m
e
n
s
i
o
n
a
l
A
n
a
l
y
s
i
s
"
"