Wolfram Language Paclet Repository

Community-contributed installable additions to the Wolfram Language

Primary Navigation

    • Cloud & Deployment
    • Core Language & Structure
    • Data Manipulation & Analysis
    • Engineering Data & Computation
    • External Interfaces & Connections
    • Financial Data & Computation
    • Geographic Data & Computation
    • Geometry
    • Graphs & Networks
    • Higher Mathematical Computation
    • Images
    • Knowledge Representation & Natural Language
    • Machine Learning
    • Notebook Documents & Presentation
    • Scientific and Medical Data & Computation
    • Social, Cultural & Linguistic Data
    • Strings & Text
    • Symbolic & Numeric Computation
    • System Operation & Setup
    • Time-Related Computation
    • User Interface Construction
    • Visualization & Graphics
    • Random Paclet
    • Alphabetical List
  • Using Paclets
    • Get Started
    • Download Definition Notebook
  • Learn More about Wolfram Language

DimensionalAnalysis

Guides

  • Dimensional Analysis

Symbols

  • CanonicalDimensionalProduct
  • ISQConformantQuantityQ
  • PhysicalQuantityData
  • PhysicalQuantityDimensions
  • QuantityUnitStrings
  • SIConformantQuantityQ
  • UnitSystemTransform
PeterBurbery`DimensionalAnalysis`
CanonicalDimensionalProduct
​
CanonicalDimensionalProduct[quantity]
writes the canonical dimensional product for
quantity
.
​
​
CanonicalDimensionalProduct[entity]
writes the canonical dimensional product for
entity
.
​
​
CanonicalDimensionalProduct[var]
writes the canonical dimensional product for quantity variable
var
​
Details and Options

Examples  
(2)
Basic Examples  
(1)
Write the canonical dimensional product for 5 webers:
In[1]:=
CanonicalDimensionalProduct
[
5
Wb
]
Out[1]=
-2
T
2
L
1
M
-1
I
Write the canonical dimensional product for 0.5 F of electric capacitance:
In[2]:=
CanonicalDimensionalProduct
[
0.5
F
]
Out[2]=
4
T
-2
L
-1
M
2
I
Write the canonical dimensional product for the quantity variables in the formula for mass density
In[3]:=
DatasetAssociationMap
CanonicalDimensionalProduct
[#]&,FormulaData["MassDensity","QuantityVariables"]
Out[3]=
ρ
-3
L
1
M
M
1
M
V
3
L
Write the canonical dimensional product for the Euler-Heisenberg Lagrangian factor of quantum electrodynamics:
In[4]:=
CanonicalDimensionalProduct

QED Euler-Heisenberg Lagrangian factor
PHYSICAL QUANTITY

Out[4]=
11
T
-7
L
-4
M
4
I
Write the canonical dimensional product for the quantum conductance physical constant:
In[5]:=
CanonicalDimensionalProduct

conductance quantum
PHYSICAL CONSTANT

Out[5]=
3
T
-2
L
-1
M
2
I
Possible Issues  
(1)

SeeAlso
"XXXX"
RelatedGuides
▪
Dimensional Analysis
""

© 2025 Wolfram. All rights reserved.

  • Legal & Privacy Policy
  • Contact Us
  • WolframAlpha.com
  • WolframCloud.com