Wolfram Language Paclet Repository

Community-contributed installable additions to the Wolfram Language

Primary Navigation

    • Cloud & Deployment
    • Core Language & Structure
    • Data Manipulation & Analysis
    • Engineering Data & Computation
    • External Interfaces & Connections
    • Financial Data & Computation
    • Geographic Data & Computation
    • Geometry
    • Graphs & Networks
    • Higher Mathematical Computation
    • Images
    • Knowledge Representation & Natural Language
    • Machine Learning
    • Notebook Documents & Presentation
    • Scientific and Medical Data & Computation
    • Social, Cultural & Linguistic Data
    • Strings & Text
    • Symbolic & Numeric Computation
    • System Operation & Setup
    • Time-Related Computation
    • User Interface Construction
    • Visualization & Graphics
    • Random Paclet
    • Alphabetical List
  • Using Paclets
    • Get Started
    • Download Definition Notebook
  • Learn More about Wolfram Language

Combinatorics

Tutorials

  • Combinatorics

Guides

  • Combinatorics
  • Functions I understand in combinatorics

Tech Notes

  • Combinatorics
  • Stirling permutation

Symbols

  • CanonicalMultiset
  • CentralBinomialCoefficient
  • ConjugatePartition
  • DescendingSublists
  • DivisorHasseDiagram
  • DominatingIntegerPartitionQ
  • DurfeeSquare
  • EnumerateMultisetPartialDerangements
  • EulerianCatalanNumber
  • EulerianNumber
  • EulerianNumberOfTheSecondKind
  • FerrersDiagram
  • Fibbinary
  • FibonacciEncode
  • FindAscentElements
  • FindAscentPositions
  • FindDescentElements
  • FindDescentPositions
  • FrobeniusSymbolFromPartition
  • FromInversionVector
  • FromPartitionPlusNotation
  • FromPartitionSuperscriptNotation
  • GaussFactorial
  • GrayCode
  • HasseDiagram
  • HookLengths
  • HuffmanCodeWords
  • HuffmanDecode
  • HuffmanEncode
  • IntegerPartitionQ
  • InverseFibonacci
  • InverseGrayCode
  • InversionCount
  • InversionVectorQ
  • LehmerCodeFromPermutation
  • LucasNumberU1
  • LucasNumberV2
  • ModifiedCentralBinomialCoefficient
  • Multichoose
  • MultisetAssociation
  • MultisetPartialDerangements
  • NarayanaNumber
  • NextPermutation
  • NumberOfTableaux
  • OrderedTupleFromIndex
  • OrderedTupleIndex
  • OrderlessCombinations
  • OrderlessCombinationsOfUnmarkedElements
  • PartialOrderGraphQ
  • PartitionCrank
  • PartitionFromFrobeniusSymbol
  • PartitionPlusNotation
  • PartitionRank
  • PartitionSuperscriptNotation
  • PermutationCountByInversions
  • PermutationFromIndex
  • PermutationGraph
  • PermutationIndex
  • PermutationMajorIndex
  • PermutationToTableaux
  • Phitorial
  • PosetQ
  • PosetToTableau
  • Primorial
  • QExponential
  • QMultinomial
  • RandomYoungTableau
  • RationalNumberRepeatingDecimalPeriod
  • ReflexiveGraphQ
  • SecantNumber
  • SelectPermutations
  • SelectSubsets
  • SelectTuples
  • SelfConjugatePartitionQ
  • SignedLahNumber
  • StandardYoungTableaux
  • StirlingPermutationGraph
  • StirlingPermutations
  • StrictIntegerPartitions
  • SubsetFromIndex
  • SubsetIndex
  • TableauQ
  • TableauToPoset
  • TableauxToPermutation
  • TangentNumber
  • ToInversionVector
  • TransitiveGraphQ
  • TransposeTableau
  • TupleFromIndex
  • TupleIndex
  • UnsignedLahNumber
  • YoungDiagram
  • ZeckendorfRepresentation
PeterBurbery`Combinatorics`
StirlingPermutationGraph
​
StirlingPermutationGraph
[perm]
displays the plane tree corresponding to the Stirling permutation perm.
​
Examples  
(2)
Basic Examples  
(1)
The number of Stirling permutations of order k is given by the double factorial (2k-1)!!. Stirling permutations were introduced by Gessel and Stanley in 1978 to show that certain numbers (the numbers of Stirling permutations with a fixed number of descents) are non-negative. They chose this name because of a connection to certain polynomials defined from the Stirling numbers, which are in turn named after 18th-century Scottish mathematician James Stirling.
Stirling permutations may be used to describe the sequences by which it is possible to construct a rooted plane tree with k edges by adding leaves one by one to the tree. For, if the edges were numbered by the order in which they were inserted, then the sequence of numbers in an Euler tour of the tree (formed by doubling the edges of the tree and traversing the children of each node in a left to ride order) is a Stirling permutation. Conversely, every Stirling permutation describes a tree construction sequence, in which the next edge closer to the root from an edge labeled i is the one whose pair of values most closely surrounds the pair of i values in the permutation.
Stirling permutations have been generalized to the permutations of a multiset with more than two copies of each value. Researchers have also studied the number of Stirling permutations that avoid certain patterns.
In[1]:=
In[2]:=
StirlingPermutationGraph
[{1,2,6,6,2,4,4,1,3,3,5,5}]
Out[2]=
In[3]:=
GraphTree
StirlingPermutationGraph
[{1,2,6,6,2,4,4,1,3,3,5,5}]
Out[3]=
Scope  
(1)

SeeAlso
StirlingPermutations
RelatedGuides
▪
Combinatorics
""

© 2025 Wolfram. All rights reserved.

  • Legal & Privacy Policy
  • Contact Us
  • WolframAlpha.com
  • WolframCloud.com