Wolfram Language Paclet Repository

Community-contributed installable additions to the Wolfram Language

Primary Navigation

    • Cloud & Deployment
    • Core Language & Structure
    • Data Manipulation & Analysis
    • Engineering Data & Computation
    • External Interfaces & Connections
    • Financial Data & Computation
    • Geographic Data & Computation
    • Geometry
    • Graphs & Networks
    • Higher Mathematical Computation
    • Images
    • Knowledge Representation & Natural Language
    • Machine Learning
    • Notebook Documents & Presentation
    • Scientific and Medical Data & Computation
    • Social, Cultural & Linguistic Data
    • Strings & Text
    • Symbolic & Numeric Computation
    • System Operation & Setup
    • Time-Related Computation
    • User Interface Construction
    • Visualization & Graphics
    • Random Paclet
    • Alphabetical List
  • Using Paclets
    • Get Started
    • Download Definition Notebook
  • Learn More about Wolfram Language

Combinatorics

Tutorials

  • Combinatorics

Guides

  • Combinatorics
  • Functions I understand in combinatorics

Tech Notes

  • Combinatorics
  • Stirling permutation

Symbols

  • CanonicalMultiset
  • CentralBinomialCoefficient
  • ConjugatePartition
  • DescendingSublists
  • DivisorHasseDiagram
  • DominatingIntegerPartitionQ
  • DurfeeSquare
  • EnumerateMultisetPartialDerangements
  • EulerianCatalanNumber
  • EulerianNumber
  • EulerianNumberOfTheSecondKind
  • FerrersDiagram
  • Fibbinary
  • FibonacciEncode
  • FindAscentElements
  • FindAscentPositions
  • FindDescentElements
  • FindDescentPositions
  • FrobeniusSymbolFromPartition
  • FromInversionVector
  • FromPartitionPlusNotation
  • FromPartitionSuperscriptNotation
  • GaussFactorial
  • GrayCode
  • HasseDiagram
  • HookLengths
  • HuffmanCodeWords
  • HuffmanDecode
  • HuffmanEncode
  • IntegerPartitionQ
  • InverseFibonacci
  • InverseGrayCode
  • InversionCount
  • InversionVectorQ
  • LehmerCodeFromPermutation
  • LucasNumberU1
  • LucasNumberV2
  • ModifiedCentralBinomialCoefficient
  • Multichoose
  • MultisetAssociation
  • MultisetPartialDerangements
  • NarayanaNumber
  • NextPermutation
  • NumberOfTableaux
  • OrderedTupleFromIndex
  • OrderedTupleIndex
  • OrderlessCombinations
  • OrderlessCombinationsOfUnmarkedElements
  • PartialOrderGraphQ
  • PartitionCrank
  • PartitionFromFrobeniusSymbol
  • PartitionPlusNotation
  • PartitionRank
  • PartitionSuperscriptNotation
  • PermutationCountByInversions
  • PermutationFromIndex
  • PermutationGraph
  • PermutationIndex
  • PermutationMajorIndex
  • PermutationToTableaux
  • Phitorial
  • PosetQ
  • PosetToTableau
  • Primorial
  • QExponential
  • QMultinomial
  • RandomYoungTableau
  • RationalNumberRepeatingDecimalPeriod
  • ReflexiveGraphQ
  • SecantNumber
  • SelectPermutations
  • SelectSubsets
  • SelectTuples
  • SelfConjugatePartitionQ
  • SignedLahNumber
  • StandardYoungTableaux
  • StirlingPermutationGraph
  • StirlingPermutations
  • StrictIntegerPartitions
  • SubsetFromIndex
  • SubsetIndex
  • TableauQ
  • TableauToPoset
  • TableauxToPermutation
  • TangentNumber
  • ToInversionVector
  • TransitiveGraphQ
  • TransposeTableau
  • TupleFromIndex
  • TupleIndex
  • UnsignedLahNumber
  • YoungDiagram
  • ZeckendorfRepresentation
PeterBurbery`Combinatorics`
ModifiedCentralBinomialCoefficient
​
ModifiedCentralBinomialCoefficient
[n]
calculates the nth modified central binomial coefficient.
​
Details and Options

Examples  
(3)
Basic Examples  
(1)
A table of values.
In[1]:=
ModifiedCentralBinomialCoefficient
[Range[40]]
Out[1]=
{1,2,3,6,10,20,35,70,126,252,462,924,1716,3432,6435,12870,24310,48620,92378,184756,352716,705432,1352078,2704156,5200300,10400600,20058300,40116600,77558760,155117520,300540195,601080390,1166803110,2333606220,4537567650,9075135300,17672631900,35345263800,68923264410,137846528820}
Put spaces between the numbers for sequences@oeis.
In[2]:=
StringRiffle
ModifiedCentralBinomialCoefficient
[Range[40]]," "
Out[2]=
1 2 3 6 10 20 35 70 126 252 462 924 1716 3432 6435 12870 24310 48620 92378 184756 352716 705432 1352078 2704156 5200300 10400600 20058300 40116600 77558760 155117520 300540195 601080390 1166803110 2333606220 4537567650 9075135300 17672631900 35345263800 68923264410 137846528820
Add lookup in front.
In[3]:=
StringJoin"lookup ",StringRiffle
ModifiedCentralBinomialCoefficient
[Range[40]]," "
Out[3]=
lookup 1 2 3 6 10 20 35 70 126 252 462 924 1716 3432 6435 12870 24310 48620 92378 184756 352716 705432 1352078 2704156 5200300 10400600 20058300 40116600 77558760 155117520 300540195 601080390 1166803110 2333606220 4537567650 9075135300 17672631900 35345263800 68923264410 137846528820
You can copy this to the clipboard.
In[4]:=
CopyToClipboardStringJoin"lookup ",StringRiffle
ModifiedCentralBinomialCoefficient
[Range[40]]," "
Send what is copied with no subject to sequences@oeis.org to do an email lookup.
Here's a dataset.
In[5]:=
DatasetAssociationMap
ModifiedCentralBinomialCoefficient
[Range[40]]
Out[5]=
1
1
2
2
3
3
4
6
5
10
6
20
7
35
8
70
9
126
10
252
11
462
12
924
13
1716
14
3432
15
6435
16
12870
17
24310
18
48620
19
92378
20
184756
rows 1–20 of
40
Ask for a discrete asymptotic.
In[6]:=
DiscreteAsymptotic
ModifiedCentralBinomialCoefficient
[n],n∞
Out[6]=
1
Beta[Quotient[n,2],1+n-Quotient[n,2]]Quotient[n,2]
In[7]:=
1
Quotient[n,2]Β(Quotient[n,2],n-Quotient[n,2]+1)
Compute this for a big number.
In[8]:=
n
1
Quotient[n,2]Β(Quotient[n,2],n-Quotient[n,2]+1)
[1000]
Out[8]=
270288240945436569515614693625975275496152008446548287007392875106625428705522193898612483924502370165362606085021546104802209750050679917549894219699518475423665484263751733356162464079737887344364574161119497604571044985756287880514600994219426752366915856603136862602484428109296905863799821216320
Is this the same?
In[9]:=
ModifiedCentralBinomialCoefficient
[1000]n
1
Quotient[n,2]Β(Quotient[n,2],n-Quotient[n,2]+1)
[1000]
Out[9]=
True
Properties & Relations  
(1)

Possible Issues  
(1)

SeeAlso
CentralBinomialCoefficient
 
▪
Binomial
RelatedLinks
Central Binomial Coefficient
▪
Discrepancy in Calculating Generating Function for Central Binomial Coefficients Bug Report on Redmine
▪
OEIS sequence of central binomial coefficients
""

© 2025 Wolfram. All rights reserved.

  • Legal & Privacy Policy
  • Contact Us
  • WolframAlpha.com
  • WolframCloud.com