Wolfram Language
Paclet Repository
Community-contributed installable additions to the Wolfram Language
Primary Navigation
Categories
Cloud & Deployment
Core Language & Structure
Data Manipulation & Analysis
Engineering Data & Computation
External Interfaces & Connections
Financial Data & Computation
Geographic Data & Computation
Geometry
Graphs & Networks
Higher Mathematical Computation
Images
Knowledge Representation & Natural Language
Machine Learning
Notebook Documents & Presentation
Scientific and Medical Data & Computation
Social, Cultural & Linguistic Data
Strings & Text
Symbolic & Numeric Computation
System Operation & Setup
Time-Related Computation
User Interface Construction
Visualization & Graphics
Random Paclet
Alphabetical List
Using Paclets
Create a Paclet
Get Started
Download Definition Notebook
Learn More about
Wolfram Language
Combinatorics
Tutorials
Combinatorics
Guides
Combinatorics
Functions I understand in combinatorics
Tech Notes
Combinatorics
Stirling permutation
Symbols
CanonicalMultiset
CentralBinomialCoefficient
ConjugatePartition
DescendingSublists
DivisorHasseDiagram
DominatingIntegerPartitionQ
DurfeeSquare
EnumerateMultisetPartialDerangements
EulerianCatalanNumber
EulerianNumber
EulerianNumberOfTheSecondKind
FerrersDiagram
Fibbinary
FibonacciEncode
FindAscentElements
FindAscentPositions
FindDescentElements
FindDescentPositions
FrobeniusSymbolFromPartition
FromInversionVector
FromPartitionPlusNotation
FromPartitionSuperscriptNotation
GaussFactorial
GrayCode
HasseDiagram
HookLengths
HuffmanCodeWords
HuffmanDecode
HuffmanEncode
IntegerPartitionQ
InverseFibonacci
InverseGrayCode
InversionCount
InversionVectorQ
LehmerCodeFromPermutation
LucasNumberU1
LucasNumberV2
ModifiedCentralBinomialCoefficient
Multichoose
MultisetAssociation
MultisetPartialDerangements
NarayanaNumber
NextPermutation
NumberOfTableaux
OrderedTupleFromIndex
OrderedTupleIndex
OrderlessCombinations
OrderlessCombinationsOfUnmarkedElements
PartialOrderGraphQ
PartitionCrank
PartitionFromFrobeniusSymbol
PartitionPlusNotation
PartitionRank
PartitionSuperscriptNotation
PermutationCountByInversions
PermutationFromIndex
PermutationGraph
PermutationIndex
PermutationMajorIndex
PermutationToTableaux
Phitorial
PosetQ
PosetToTableau
Primorial
QExponential
QMultinomial
RandomYoungTableau
RationalNumberRepeatingDecimalPeriod
ReflexiveGraphQ
SecantNumber
SelectPermutations
SelectSubsets
SelectTuples
SelfConjugatePartitionQ
SignedLahNumber
StandardYoungTableaux
StirlingPermutationGraph
StirlingPermutations
StrictIntegerPartitions
SubsetFromIndex
SubsetIndex
TableauQ
TableauToPoset
TableauxToPermutation
TangentNumber
ToInversionVector
TransitiveGraphQ
TransposeTableau
TupleFromIndex
TupleIndex
UnsignedLahNumber
YoungDiagram
ZeckendorfRepresentation
PeterBurbery`Combinatorics`
C
a
n
o
n
i
c
a
l
M
u
l
t
i
s
e
t
C
a
n
o
n
i
c
a
l
M
u
l
t
i
s
e
t
[
m
u
l
t
i
s
e
t
]
r
e
p
l
a
c
e
s
a
l
l
e
l
e
m
e
n
t
s
i
n
m
u
l
t
i
s
e
t
w
i
t
h
i
n
t
e
g
e
r
s
.
Examples
(
1
)
Basic Examples
(
1
)
Canonicalize a multiset:
I
n
[
1
]
:
=
C
a
n
o
n
i
c
a
l
M
u
l
t
i
s
e
t
,
,
,
,
,
,
O
u
t
[
1
]
=
{
1
,
1
,
2
,
2
,
3
,
3
,
4
}
Canonicalize another multiset:
I
n
[
2
]
:
=
C
a
n
o
n
i
c
a
l
M
u
l
t
i
s
e
t
,
,
,
,
,
,
O
u
t
[
2
]
=
{
1
,
2
,
2
,
2
,
3
,
4
,
4
}
Canonicalize another multiset:
I
n
[
3
]
:
=
C
a
n
o
n
i
c
a
l
M
u
l
t
i
s
e
t
,
,
,
,
,
,
O
u
t
[
3
]
=
{
1
,
2
,
3
,
3
,
3
,
3
,
3
}
S
e
e
A
l
s
o
U
n
i
o
n
▪
C
a
n
o
n
i
c
a
l
G
r
a
p
h
▪
C
a
n
o
n
i
c
a
l
N
a
m
e
▪
C
a
n
o
n
i
c
a
l
i
z
e
R
e
g
i
o
n
▪
C
a
n
o
n
i
c
a
l
i
z
e
P
o
l
y
g
o
n
▪
C
a
n
o
n
i
c
a
l
i
z
e
P
o
l
y
h
e
d
r
o
n
▪
Q
u
a
n
t
i
t
y
V
a
r
i
a
b
l
e
C
a
n
o
n
i
c
a
l
U
n
i
t
▪
T
o
E
n
t
i
t
y
R
e
l
a
t
e
d
G
u
i
d
e
s
▪
C
o
m
b
i
n
a
t
o
r
i
c
s
"
"