Wolfram Language Paclet Repository

Community-contributed installable additions to the Wolfram Language

Primary Navigation

    • Cloud & Deployment
    • Core Language & Structure
    • Data Manipulation & Analysis
    • Engineering Data & Computation
    • External Interfaces & Connections
    • Financial Data & Computation
    • Geographic Data & Computation
    • Geometry
    • Graphs & Networks
    • Higher Mathematical Computation
    • Images
    • Knowledge Representation & Natural Language
    • Machine Learning
    • Notebook Documents & Presentation
    • Scientific and Medical Data & Computation
    • Social, Cultural & Linguistic Data
    • Strings & Text
    • Symbolic & Numeric Computation
    • System Operation & Setup
    • Time-Related Computation
    • User Interface Construction
    • Visualization & Graphics
    • Random Paclet
    • Alphabetical List
  • Using Paclets
    • Get Started
    • Download Definition Notebook
  • Learn More about Wolfram Language

SudokuHints

Guides

  • Sudoku Hints

Symbols

  • BackTracking
  • CellSize
  • ColoredCells
  • CommonCellColor
  • Disks
  • DoubleCandidates
  • EditSudoku
  • EnterClues
  • EnterSudoku
  • ExportSudoku
  • ExtraBlockCellColor
  • ExtraBlocks
  • HiddenPairs
  • HiddenQuadruples
  • HiddenSingles
  • HiddenTriples
  • Hints
  • IncludeCandidates
  • LockedCandidates
  • MaxSolutions
  • MaxSteps
  • MonitorSteps
  • Pairs
  • ReduceSudoku
  • SetDisplay
  • ShowCandidates
  • ShowInfo
  • Singles
  • SolveSudoku
  • SudokuFromString
  • Sudoku
  • SudokuToString
  • ThreeGroups
  • Triples
  • YWing
  • $AllRules
  • $Sudoku
FredSimons`SudokuHints`
Singles
​
Singles
[sudoku]
shows all reductionsin the sudoku due to the rule single.
​
Details and Options

Examples  
(1)
Basic Examples  
(1)
In[1]:=
Singles["003000008000000016400905000000069000000000007004300000000017030200000040150640200"]
Out[1]=
Contents cannot be rendered at this time; please try again later
R6C9(1,2,5), R7C7(5,6,8), R7C9(5), R8C7(1,5,6,7,8), R8C9(1,5), R9C3(7,8), R9C8(7,8), R9C9(9)
The only candidate in cell R9C9 is 9, so it has to be placed there and can be removed as a candidate from all cells that see this cell.
SeeAlso
$AllRules
 
▪
Hints
 
▪
ReduceSudoku
RelatedGuides
▪
Sudoku Hints
""

© 2025 Wolfram. All rights reserved.

  • Legal & Privacy Policy
  • Contact Us
  • WolframAlpha.com
  • WolframCloud.com