Wolfram Language Paclet Repository

Community-contributed installable additions to the Wolfram Language

Primary Navigation

    • Cloud & Deployment
    • Core Language & Structure
    • Data Manipulation & Analysis
    • Engineering Data & Computation
    • External Interfaces & Connections
    • Financial Data & Computation
    • Geographic Data & Computation
    • Geometry
    • Graphs & Networks
    • Higher Mathematical Computation
    • Images
    • Knowledge Representation & Natural Language
    • Machine Learning
    • Notebook Documents & Presentation
    • Scientific and Medical Data & Computation
    • Social, Cultural & Linguistic Data
    • Strings & Text
    • Symbolic & Numeric Computation
    • System Operation & Setup
    • Time-Related Computation
    • User Interface Construction
    • Visualization & Graphics
    • Random Paclet
    • Alphabetical List
  • Using Paclets
    • Get Started
    • Download Definition Notebook
  • Learn More about Wolfram Language

SudokuHints

Guides

  • Sudoku Hints

Symbols

  • BackTracking
  • CellSize
  • ColoredCells
  • CommonCellColor
  • Disks
  • DoubleCandidates
  • EditSudoku
  • EnterClues
  • EnterSudoku
  • ExportSudoku
  • ExtraBlockCellColor
  • ExtraBlocks
  • HiddenPairs
  • HiddenQuadruples
  • HiddenSingles
  • HiddenTriples
  • Hints
  • IncludeCandidates
  • LockedCandidates
  • MaxSolutions
  • MaxSteps
  • MonitorSteps
  • Pairs
  • ReduceSudoku
  • SetDisplay
  • ShowCandidates
  • ShowInfo
  • Singles
  • SolveSudoku
  • SudokuFromString
  • Sudoku
  • SudokuToString
  • ThreeGroups
  • Triples
  • YWing
  • $AllRules
  • $Sudoku
FredSimons`SudokuHints`
ReduceSudoku
​
ReduceSudoku
[sudoku,rules]
reduces the sudoku as much as possible by repeatedly applying the rules.
​
Details and Options

Examples  
(5)
Basic Examples  
(5)
This sudoku can be solved with the rules in
$AllRules
:
In[1]:=
ReduceSudoku
["800900020010050900007002000600001080400000607030500000000000490000007301040623000"]
Clues25,HiddenPairs2,HiddenTriples1,LockedCandidates1,Solved1
Out[1]=
Contents cannot be rendered at this time; please try again later
​
This sudoku cannot be solved because of it has no solutions. That is detected during the reduction:
In[1]:=
ReduceSudoku
["902300000070050030006000007400280600000000900000601004800400092700003050010000000"]
Sudoku
::nosol
:This sudoku has no solutions.
Clues24,Solved0
Out[1]=
Contents cannot be rendered at this time; please try again later
​
The next sudoku cannot be solved with our rules. None of the rules will give a further reduction.
In[1]:=
ReduceSudoku
["002300000070050030006000007400280600000000900000601004800400092700003050010000000"]
Clues23,HiddenPairs1,ThreeGroups1,Solved0
Out[1]=
Contents cannot be rendered at this time; please try again later
The sudoku has a unique solution:
In[2]:=
ReduceSudoku
"002300000070050030006000007400280600000000900000601004800400092700003050010000000",
BackTracking
True
SolveSudoku
::steps
:The result was found in 39 steps.
Clues23,HiddenPairs1,ThreeGroups1,Solved1,BackTracking1
Out[2]=
Contents cannot be rendered at this time; please try again later
​
The next sudoku has more than one solution:.
In[1]:=
ReduceSudoku
"000140070300005000000000602008500700020900000507004030003001000190700800000020160",
BackTracking
True
SolveSudoku
::steps
:The result was found in 9 steps.
Sudoku
::nnsol
:This sudoku has more than one solution
Clues25,HiddenPairs1,LockedCandidates1,BackTracking1,Solved0
Out[1]=
Contents cannot be rendered at this time; please try again later
​
ReduceSudoku can be used for multi sudoku's:
In[1]:=
sud=
SudokuFromString
["000570000091300000680000000060000300000084020005040000507900000008000000300708260000000000000004060009000200500000000000391000700800200000400003&&0C0F010q"]
Out[1]=
Contents cannot be rendered at this time; please try again later
In[2]:=
ReduceSudoku
[sud]
Clues36,HiddenPairs2,HiddenTriples1,LockedCandidates2,Triples1,Solved1
Out[2]=
Contents cannot be rendered at this time; please try again later

© 2025 Wolfram. All rights reserved.

  • Legal & Privacy Policy
  • Contact Us
  • WolframAlpha.com
  • WolframCloud.com