Wolfram Language Paclet Repository

Community-contributed installable additions to the Wolfram Language

Primary Navigation

    • Cloud & Deployment
    • Core Language & Structure
    • Data Manipulation & Analysis
    • Engineering Data & Computation
    • External Interfaces & Connections
    • Financial Data & Computation
    • Geographic Data & Computation
    • Geometry
    • Graphs & Networks
    • Higher Mathematical Computation
    • Images
    • Knowledge Representation & Natural Language
    • Machine Learning
    • Notebook Documents & Presentation
    • Scientific and Medical Data & Computation
    • Social, Cultural & Linguistic Data
    • Strings & Text
    • Symbolic & Numeric Computation
    • System Operation & Setup
    • Time-Related Computation
    • User Interface Construction
    • Visualization & Graphics
    • Random Paclet
    • Alphabetical List
  • Using Paclets
    • Get Started
    • Download Definition Notebook
  • Learn More about Wolfram Language

ChatGPTPromptExplorer

Guides

  • ChatGPTPromptExplorer

Tech Notes

  • ChatGPTPromptExplorer Workflows
  • ChatGPTPromptExplorer
  • Designing an LLMFunction
  • Experimenting with Prompts
  • Working with Chatbooks
  • Working with https://chat.openai.com/
  • Working with the Prompt Repository

Symbols

  • ChatGPTPromptExplorerGeneralPalette
  • ChatGPTPromptExplorerUIElement
  • ChatGPTQAPI
  • createPromptNotebook
  • getAllOpenAIModels
  • getPromptsFromPromptNotebook
  • promptEngineeringCell
  • $openAIAPIKey
Designing an LLMFunction
One approach to creating an LLMFunction
LLMFunction
From a Chat Notebook
ChatGPTPromptExplorerGeneralPalette
[]
opens the ChatGPTPromptExplorerGeneralPalette. This governs the main interactions with this application.
Opening the ChatGPTPromptExplorerGeneralPalette.
One approach to creating an LLMFunction
First load the package:
Needs["DavidReiss`ChatGPTPromptExplorer`ChatGPTPromptExplorer`"];
LLMFunction
From a Chat Notebook

First approach: from a
ChatObject
expression:

Create a Chat Notebook. For any function keys enclose those in single quotes.
From the
ChatGPTPromptExplorerGeneralPalette
click on "Copy ChatObject". Then paste the result in to the LLMFunction[""] expression within a pair of quotation marks
In[33]:=
co=ChatObject
What team did `Pitcher` and `Catcher` play for?
Give your answer as an haiku.
;
In[37]:=
llmFun1=LLMFunction[Query[All,"Content"]@co["Messages"]]
Out[37]=
LLMFunction
Template: {What team did `Pitcher` and `Catcher` play for?,Give your answer as an haiku.}
Interpreter: String

In[36]:=
llmFun1["Pitcher""Whitey Ford","Catcher""Yogi Berra"]
Out[36]=
Pinstripes they donned proud,Yankees legends they became,Ford and Berra's team.

First approach: from a JSON expression

Create a Chat Notebook. For any function keys enclose those in single quotes.
From the
ChatGPTPromptExplorerGeneralPalette
click on "Copy Prompts: JSON". Then paste the result in to the LLMFunction[""] expression within a pair of quotation marks
In[31]:=
llmFun2=​​LLMFunction["[\t{\t\t\"role\":\"user\",\t\t\"content\":\"What team did `Pitcher` and `Catcher` play for?\"\t},\t{\t\t\"role\":\"user\",\t\t\"content\":\"Give your answer as an haiku.\"\t}]"]
Out[31]=
LLMFunction
​
Content: [ { "role":"user", "content":"What team did
"Pitcher"
and
"Catcher"
play for?" }, { "role":"user", "content":"Give your answer as an haiku." }]
Parameters:
"Catcher"
,
"Pitcher"

In[32]:=
llmFun2["Pitcher""Whitey Ford","Catcher""Yogi Berra"]
Out[32]=
Two Yankees greats played,Whitey Ford and Yogi Berra,Bronx Bombers for life.
RelatedGuides
▪
ChatGPTPromptExplorer
RelatedTechNotes
▪
ChatGPTPromptExplorer Workflows
▪
ExperimentingwithPrompts
""

© 2025 Wolfram. All rights reserved.

  • Legal & Privacy Policy
  • Contact Us
  • WolframAlpha.com
  • WolframCloud.com