Wolfram Language
Paclet Repository
Community-contributed installable additions to the Wolfram Language
Primary Navigation
Categories
Cloud & Deployment
Core Language & Structure
Data Manipulation & Analysis
Engineering Data & Computation
External Interfaces & Connections
Financial Data & Computation
Geographic Data & Computation
Geometry
Graphs & Networks
Higher Mathematical Computation
Images
Knowledge Representation & Natural Language
Machine Learning
Notebook Documents & Presentation
Scientific and Medical Data & Computation
Social, Cultural & Linguistic Data
Strings & Text
Symbolic & Numeric Computation
System Operation & Setup
Time-Related Computation
User Interface Construction
Visualization & Graphics
Random Paclet
Alphabetical List
Using Paclets
Create a Paclet
Get Started
Download Definition Notebook
Learn More about
Wolfram Language
STensor
Guides
Get Started
Tech Notes
Basic Tensor Computation
ComputationWithMetric
Symbols
ChristoffelSymbol
CreateTensor
EinsteinTensor
Inverse
IsMetric
LineElement
RicciScalar
RicciTensor
RiemannTensor
SCoordinateTransform
STensor
STensorQ
Symmetrize
TensorRank
TensorSymmetry
Tr
VolumeElement
WeylTensor
BowenPing`STensor`
T
e
n
s
o
r
S
y
m
m
e
t
r
y
T
e
n
s
o
r
S
y
m
m
e
t
r
y
[
T
]
g
i
v
e
s
t
h
e
s
y
m
m
e
t
r
y
o
f
T
u
n
d
e
r
p
e
r
m
u
t
a
t
i
o
n
s
o
f
a
l
l
i
t
s
i
n
d
i
c
e
s
.
T
e
n
s
o
r
S
y
m
m
e
t
r
y
[
T
,
s
l
o
t
s
]
g
i
v
e
s
t
h
e
s
y
m
m
e
t
r
y
o
f
T
u
n
d
e
r
p
e
r
m
u
t
a
t
i
o
n
o
f
t
h
e
s
p
e
c
i
f
i
e
d
l
i
s
t
o
f
s
l
o
t
s
.
D
e
t
a
i
l
s
a
n
d
O
p
t
i
o
n
s
Examples
(
2
)
Basic Examples
(
1
)
Create a tensor with symmetry using option:
I
n
[
1
]
:
=
T
=
C
r
e
a
t
e
T
e
n
s
o
r
[
"
T
"
,
{
2
,
1
}
,
{
x
,
y
,
z
}
,
A
r
r
a
y
[
S
u
b
s
c
r
i
p
t
[
"
t
"
,
#
#
]
&
,
{
3
,
3
,
3
}
]
,
S
y
m
m
e
t
r
y
S
y
m
m
e
t
r
i
c
[
{
1
,
2
}
]
]
O
u
t
[
1
]
=
S
T
e
n
s
o
r
S
y
m
b
o
l
:
T
R
a
n
k
:
{
2
,
1
}
The "Symmetry" property is set:
I
n
[
2
]
:
=
T
[
"
S
y
m
m
e
t
r
y
"
]
O
u
t
[
2
]
=
S
y
m
m
e
t
r
i
c
[
{
1
,
2
}
]
The components array has been symmetrize as above:
I
n
[
3
]
:
=
T
[
"
C
o
m
p
o
n
e
n
t
s
"
]
O
u
t
[
3
]
=
S
y
m
m
e
t
r
i
z
e
d
A
r
r
a
y
D
i
m
e
n
s
i
o
n
s
:
{
3
,
3
,
3
}
S
y
m
m
e
t
r
y
:
S
y
m
m
e
t
r
i
c
[
{
1
,
2
}
]
S
c
o
p
e
(
1
)
S
e
e
A
l
s
o
T
e
n
s
o
r
S
y
m
m
e
t
r
y
▪
S
y
m
m
e
t
r
i
z
e
R
e
l
a
t
e
d
G
u
i
d
e
s
▪
G
e
t
S
t
a
r
t
e
d
"
"